Advertisement

Neurochemical Research

, Volume 39, Issue 8, pp 1522–1532 | Cite as

iPLA2β Knockout Mouse, a Genetic Model for Progressive Human Motor Disorders, Develops Age-Related Neuropathology

  • Helene Blanchard
  • Ameer Y. Taha
  • Yewon Cheon
  • Hyung-Wook Kim
  • John Turk
  • Stanley I. Rapoport
Original Paper

Abstract

Calcium-independent phospholipase A2 group VIa (iPLA2β) preferentially releases docosahexaenoic acid (DHA) from the sn-2 position of phospholipids. Mutations of its gene, PLA2G6, are found in patients with several progressive motor disorders, including Parkinson disease. At 4 months, PLA2G6 knockout mice (iPLA2β−/−) show minimal neuropathology but altered brain DHA metabolism. By 1 year, they develop motor disturbances, cerebellar neuronal loss, and striatal α-synuclein accumulation. We hypothesized that older iPLA2β−/− mice also would exhibit inflammatory and other neuropathological changes. Real-time polymerase chain reaction and Western blotting were performed on whole brain homogenate from 15 to 20-month old male iPLA2β−/− or wild-type (WT) mice. These older iPLA2β−/− mice compared with WT showed molecular evidence of microglial (CD-11b, iNOS) and astrocytic (glial fibrillary acidic protein) activation, disturbed expression of enzymes involved in arachidonic acid metabolism, loss of neuroprotective brain derived neurotrophic factor, and accumulation of cytokine TNF-α messenger ribonucleic acid, consistent with neuroinflammatory pathology. There was no evidence of synaptic loss, of reduced expression of dopamine active reuptake transporter, or of accumulation of the Parkinson disease markers Parkin or Pink1. iPLA2γ expression was unchanged. iPLA2β deficient mice show evidence of neuroinflammation and associated neuropathology with motor dysfunction in later life. These pathological biomarkers could be used to assess efficacy of dietary intervention, antioxidants or other therapies on disease progression in this mouse model of progressive human motor diseases associated with a PLA2G6 mutation.

Keywords

Calcium-independent phospholipase A2 (iPLA2β) knockout Brain Parkinson disease Arachidonic and docosahexaenoic acid Motor disturbances Neuropathology 

Notes

Acknowledgments

The authors thank the NIH Fellow Editorial Board and Ms. Mairi Stevens for editorial assistance and Dr. Dede Greenstein for statistical support. Research was supported by the Intramural Research Program of the National Institute on Aging and, for JT, by United States Public Health Service Grants R37-DK34388, P41-RR00954, P60-DK20579, and P30-DK56341.

Conflict of interest

Authors declare no competing financial interests.

References

  1. 1.
    Corey EJ, Shih C, Cashman JR (1983) Docosahexaenoic acid is a strong inhibitor of prostaglandin but not leukotriene biosynthesis. Proc Natl Acad Sci USA 80(12):3581–3584PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Yavin E, Brand A, Green P (2002) Docosahexaenoic acid abundance in the brain: a biodevice to combat oxidative stress. Nutr Neurosci 5(3):149–157PubMedCrossRefGoogle Scholar
  3. 3.
    Balsinde J, Balboa MA (2005) Cellular regulation and proposed biological functions of group VIA calcium-independent phospholipase A2 in activated cells. Cell Signal 17(9):1052–1062PubMedCrossRefGoogle Scholar
  4. 4.
    Basselin M, Rosa AO, Ramadan E, Cheon Y, Chang L, Chen M, Greenstein D, Wohltmann M, Turk J, Rapoport SI (2010) Imaging decreased brain docosahexaenoic acid metabolism and signaling in iPLA(2)beta (VIA)-deficient mice. J Lipid Res 51(11):3166–3173PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Domenichiello AF, Chen CT, Trepanier MO, Stavro PM, Bazinet RP (2014) Whole body synthesis rates of DHA from alpha-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats. J Lipid Res 55(1):62–74PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Yang HC, Mosior M, Ni B, Dennis EA (1999) Regional distribution, ontogeny, purification, and characterization of the Ca2 + -independent phospholipase A2 from rat brain. J Neurochem 73(3):1278–1287PubMedCrossRefGoogle Scholar
  7. 7.
    Strokin M, Sergeeva M, Reiser G (2007) Prostaglandin synthesis in rat brain astrocytes is under the control of the n-3 docosahexaenoic acid, released by group VIB calcium-independent phospholipase A2. J Neurochem 102(6):1771–1782PubMedCrossRefGoogle Scholar
  8. 8.
    Balboa MA, Varela-Nieto I, Killermann Lucas K, Dennis EA (2002) Expression and function of phospholipase A(2) in brain. FEBS Lett 531(1):12–17PubMedCrossRefGoogle Scholar
  9. 9.
    Nardocci N, Zorzi G, Farina L, Binelli S, Scaioli W, Ciano C, Verga L, Angelini L, Savoiardo M, Bugiani O (1999) Infantile neuroaxonal dystrophy: clinical spectrum and diagnostic criteria. Neurology 52(7):1472–1478PubMedCrossRefGoogle Scholar
  10. 10.
    Gregory A, Westaway SK, Holm IE, Kotzbauer PT, Hogarth P, Sonek S, Coryell JC, Nguyen TM, Nardocci N, Zorzi G, Rodriguez D, Desguerre I, Bertini E, Simonati A, Levinson B, Dias C, Barbot C, Carrilho I, Santos M, Malik I, Gitschier J, Hayflick SJ (2008) Neurodegeneration associated with genetic defects in phospholipase A(2). Neurology 71(18):1402–1409PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Morgan NV, Westaway SK, Morton JE, Gregory A, Gissen P, Sonek S, Cangul H, Coryell J, Canham N, Nardocci N, Zorzi G, Pasha S, Rodriguez D, Desguerre I, Mubaidin A, Bertini E, Trembath RC, Simonati A, Schanen C, Johnson CA, Levinson B, Woods CG, Wilmot B, Kramer P, Gitschier J, Maher ER, Hayflick SJ (2006) PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet 38(7):752–754PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Yoshino H, Tomiyama H, Tachibana N, Ogaki K, Li Y, Funayama M, Hashimoto T, Takashima S, Hattori N (2010) Phenotypic spectrum of patients with PLA2G6 mutation and PARK14-linked parkinsonism. Neurology 75(15):1356–1361PubMedCrossRefGoogle Scholar
  13. 13.
    Lu CS, Lai SC, Wu RM, Weng YH, Huang CL, Chen RS, Chang HC, Wu-Chou YH, Yeh TH (2012) PLA2G6 mutations in PARK14-linked young-onset parkinsonism and sporadic Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet 159B(2):183–191PubMedCrossRefGoogle Scholar
  14. 14.
    Paisan-Ruiz C, Li A, Schneider SA, Holton JL, Johnson R, Kidd D, Chataway J, Bhatia KP, Lees AJ, Hardy J, Revesz T, Houlden H (2012) Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiol Aging 33(4):814–823PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Gui YX, Xu ZP, Wen L, Liu HM, Zhao JJ, Hu XY (2013) Four novel rare mutations of PLA2G6 in Chinese population with Parkinson’s disease. Parkinsonism Relat Disord 19(1):21–26PubMedCrossRefGoogle Scholar
  16. 16.
    Malik I, Turk J, Mancuso DJ, Montier L, Wohltmann M, Wozniak DF, Schmidt RE, Gross RW, Kotzbauer PT (2008) Disrupted membrane homeostasis and accumulation of ubiquitinated proteins in a mouse model of infantile neuroaxonal dystrophy caused by PLA2G6 mutations. Am J Pathol 172(2):406–416PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Zhao Z, Zhang X, Zhao C, Choi J, Shi J, Song K, Turk J, Ma ZA (2010) Protection of pancreatic beta-cells by group VIA phospholipase A(2)-mediated repair of mitochondrial membrane peroxidation. Endocrinology 151(7):3038–3048PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Lee LY, Ong WY, Farooqui AA, Burgunder JM (2007) Role of calcium-independent phospholipase A2 in cortex striatum thalamus cortex circuitry-enzyme inhibition causes vacuous chewing movements in rats. Psychopharmacology 195(3):387–395PubMedCrossRefGoogle Scholar
  19. 19.
    Shinzawa K, Sumi H, Ikawa M, Matsuoka Y, Okabe M, Sakoda S, Tsujimoto Y (2008) Neuroaxonal dystrophy caused by group VIA phospholipase A2 deficiency in mice: a model of human neurodegenerative disease. J Neurosci 28(9):2212–2220PubMedCrossRefGoogle Scholar
  20. 20.
    Zhao Z, Wang J, Zhao C, Bi W, Yue Z, Ma ZA (2011) Genetic ablation of PLA2G6 in mice leads to cerebellar atrophy characterized by Purkinje cell loss and glial cell activation. Plos One 6(10):e26991PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Cheon Y, Kim HW, Igarashi M, Modi HR, Chang L, Ma K, Greenstein D, Wohltmann M, Turk J, Rapoport SI and Taha AY (2012) Disturbed brain phospholipid and docosahexaenoic acid metabolism in calcium-independent phospholipase A(2)-VIA (iPLA(2)beta)-knockout mice. Biochim Biophys Acta 1821(9):1278–1286Google Scholar
  22. 22.
    Rapoport SI (2008) Brain arachidonic and docosahexaenoic acid cascades are selectively altered by drugs, diet and disease. Prostaglandins Leukot Essent Fatty Acid 79(3–5):153–156CrossRefGoogle Scholar
  23. 23.
    Bao S, Miller DJ, Ma Z, Wohltmann M, Eng G, Ramanadham S, Moley K, Turk J (2004) Male mice that do not express group VIA phospholipase A2 produce spermatozoa with impaired motility and have greatly reduced fertility. J Biol Chem 279(37):38194–38200PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  25. 25.
    Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image Processing with ImageJ. Biophotonics Int 11(7):36–42Google Scholar
  26. 26.
    Cohen J (1992) A power primer. Psychol Bull 112(1):155–159PubMedCrossRefGoogle Scholar
  27. 27.
    Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK (2004) Role of microglia in central nervous system infections. Clin Microbiol Rev 17(4):942–964PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Chao J, Leung Y, Wang M, Chang RC (2012) Nutraceuticals and their preventive or potential therapeutic value in Parkinson’s disease. Nutr Rev 70(7):373–386PubMedCrossRefGoogle Scholar
  29. 29.
    Sutachan JJ, Casas Z, Albarracin SL, Stab BR 2nd, Samudio I, Gonzalez J, Morales L, Barreto GE (2012) Cellular and molecular mechanisms of antioxidants in Parkinson’s disease. Nutr Neurosci 15(3):120–126PubMedCrossRefGoogle Scholar
  30. 30.
    Igarashi M, Gao F, Kim HW, Ma K, Bell JM, Rapoport SI (2009) Dietary n-6 PUFA deprivation for 15 weeks reduces arachidonic acid concentrations while increasing n-3 PUFA concentrations in organs of post-weaning male rats. Biochim Biophys Acta 1791(2):132–139PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Kim HW, Rao JS, Rapoport SI, Igarashi M (2011) Dietary n-6 PUFA deprivation downregulates arachidonate but upregulates docosahexaenoate metabolizing enzymes in rat brain. Biochim Biophys Acta 1811(2):111–117PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Ramsden CE, Mann JD, Faurot KR, Lynch C, Imam ST, MacIntosh BA, Hibbeln JR, Loewke J, Smith S, Coble R, Suchindran C, Gaylord SA (2011) Low omega-6 versus low omega-6 plus high omega-3 dietary intervention for chronic daily headache: protocol for a randomized clinical trial. Trials 12:97PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Marszalek JR, Kitidis C, Dirusso CC, Lodish HF (2005) Long-chain acyl-CoA synthetase 6 preferentially promotes DHA metabolism. J Biol Chem 280(11):10817–10826PubMedCrossRefGoogle Scholar
  34. 34.
    Yamashita A, Sugiura T, Waku K (1997) Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells. J Biochem 122(1):1–16PubMedCrossRefGoogle Scholar
  35. 35.
    Gijon MA, Riekhof WR, Zarini S, Murphy RC, Voelker DR (2008) Lysophospholipid acyltransferases and arachidonate recycling in human neutrophils. J Biol Chem 283(44):30235–30245PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    DeGeorge JJ, Nariai T, Yamazaki S, Williams WM, Rapoport SI (1991) Arecoline-stimulated brain incorporation of intravenously administered fatty acids in unanesthetized rats. J Neurochem 56(1):352–355PubMedCrossRefGoogle Scholar
  37. 37.
    Cao J, Shan D, Revett T, Li D, Wu L, Liu W, Tobin JF, Gimeno RE (2008) Molecular identification of a novel mammalian brain isoform of acyl-CoA:lysophospholipid acyltransferase with prominent ethanolamine lysophospholipid acylating activity, LPEAT2. J Biol Chem 283(27):19049–19057PubMedCrossRefGoogle Scholar
  38. 38.
    Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115(10):2774–2783PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN (2003) Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells autacoids in anti-inflammation. J Biol Chem 278(17):14677–14687PubMedCrossRefGoogle Scholar
  40. 40.
    Serhan CN, Yacoubian S, Yang R (2008) Anti-inflammatory and proresolving lipid mediators. Annu Rev Pathol 3:279–312PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Swamy MV, Cooma I, Patlolla JM, Simi B, Reddy BS, Rao CV (2004) Modulation of cyclooxygenase-2 activities by the combined action of celecoxib and decosahexaenoic acid: novel strategies for colon cancer prevention and treatment. Mol Cancer Ther 3(2):215–221PubMedGoogle Scholar
  42. 42.
    Clark JD, Lin LL, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Milona N, Knopf JL (1991) A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2 +)-dependent translocation domain with homology to PKC and GAP. Cell 65(6):1043–1051PubMedCrossRefGoogle Scholar
  43. 43.
    Kim HW, Rao JS, Rapoport SI, Igarashi M (2011) Regulation of rat brain polyunsaturated fatty acid (PUFA) metabolism during graded dietary n-3 PUFA deprivation. Prostaglandins Leukot Essent Fatty Acids 85(6):361–368PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Buschbeck M, Ghomashchi F, Gelb MH, Watson SP, Borsch-Haubold AG (1999) Stress stimuli increase calcium-induced arachidonic acid release through phosphorylation of cytosolic phospholipase A2. Biochem J 344(Pt 2):359–366PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Murakami M, Kambe T, Shimbara S, Kudo I (1999) Functional coupling between various phospholipase A2 s and cyclooxygenases in immediate and delayed prostanoid biosynthetic pathways. J Biol Chem 274(5):3103–3115PubMedCrossRefGoogle Scholar
  46. 46.
    Scherfler C, Schwarz J, Antonini A, Grosset D, Valldeoriola F, Marek K, Oertel W, Tolosa E, Lees AJ, Poewe W (2007) Role of DAT-SPECT in the diagnostic work up of parkinsonism. Mov Disord 22(9):1229–1238PubMedCrossRefGoogle Scholar
  47. 47.
    Bhattacharjee AK, Meister LM, Chang L, Bazinet RP, White L, Rapoport SI (2007) In vivo imaging of disturbed pre- and post-synaptic dopaminergic signaling via arachidonic acid in a rat model of Parkinson’s disease. NeuroImage 37(4):1112–1121PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608PubMedCrossRefGoogle Scholar
  49. 49.
    Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160PubMedCrossRefGoogle Scholar
  50. 50.
    Pilsl A, Winklhofer KF (2012) Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson’s disease. Acta Neuropathol 123(2):173–188PubMedCrossRefGoogle Scholar
  51. 51.
    Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP (2003) The role of glial reaction and inflammation in Parkinson’s disease. Ann NY Acad Sci 991:214–228PubMedCrossRefGoogle Scholar
  52. 52.
    Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69PubMedCrossRefGoogle Scholar
  53. 53.
    Barde YA (1994) Neurotrophins: a family of proteins supporting the survival of neurons. Prog Clin Biol Res 390:45–56PubMedGoogle Scholar
  54. 54.
    Howells DW, Porritt MJ, Wong JY, Batchelor PE, Kalnins R, Hughes AJ, Donnan GA (2000) Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp Neurol 166(1):127–135PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhou Y, Hong JS, Zhang J (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19(6):533–542PubMedCrossRefGoogle Scholar
  56. 56.
    Golovko MY, Rosenberger TA, Feddersen S, Faergeman NJ, Murphy EJ (2007) Alpha-synuclein gene ablation increases docosahexaenoic acid incorporation and turnover in brain phospholipids. J Neurochem 101(1):201–211PubMedCrossRefGoogle Scholar
  57. 57.
    Golovko MY, Rosenberger TA, Faergeman NJ, Feddersen S, Cole NB, Pribill I, Berger J, Nussbaum RL, Murphy EJ (2006) Acyl-CoA synthetase activity links wild-type but not mutant alpha-synuclein to brain arachidonate metabolism. Biochemistry 45(22):6956–6966PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Yakunin E, Loeb V, Kisos H, Biala Y, Yehuda S, Yaari Y, Selkoe DJ, Sharon R (2012) Alpha-synuclein neuropathology is controlled by nuclear hormone receptors and enhanced by docosahexaenoic acid in a mouse model for Parkinson’s disease. Brain Pathol 22(3):280–294PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Ramadan E, Rosa AO, Chang L, Chen M, Rapoport SI, Basselin M (2010) Extracellular-derived calcium does not initiate in vivo neurotransmission involving docosahexaenoic acid. J Lipid Res 51(8):2334–2340PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Lehman JJ, Brown KA, Ramanadham S, Turk J, Gross RW (1993) Arachidonic acid release from aortic smooth muscle cells induced by [Arg8]vasopressin is largely mediated by calcium-independent phospholipase A2. J Biol Chem 268(28):20713–20716PubMedGoogle Scholar
  61. 61.
    Wolf MJ, Gross RW (1996) Expression, purification, and kinetic characterization of a recombinant 80-kDa intracellular calcium-independent phospholipase A2. J Biol Chem 271(48):30879–30885PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2014

Authors and Affiliations

  • Helene Blanchard
    • 1
  • Ameer Y. Taha
    • 1
  • Yewon Cheon
    • 1
  • Hyung-Wook Kim
    • 1
    • 2
  • John Turk
    • 3
  • Stanley I. Rapoport
    • 1
  1. 1.Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on AgingNational Institutes of HealthBethesdaUSA
  2. 2.College of Life SciencesSejong UniversitySeoulKorea
  3. 3.Division of Endocrinology, Medicine Department Metabolism and Lipid ResearchWashington University School of MedicineSt. LouisUSA

Personalised recommendations