Neurochemical Research

, Volume 39, Issue 7, pp 1322–1331 | Cite as

Curcumin Prevents Cerebral Ischemia Reperfusion Injury Via Increase of Mitochondrial Biogenesis

  • Li Liu
  • Wenchao Zhang
  • Li Wang
  • Yu Li
  • Botao Tan
  • Xi Lu
  • Yushuang Deng
  • Yuping Zhang
  • Xiuming Guo
  • Jun Mu
  • Gang Yu
Original Paper


Curcumin is known to have neuroprotective properties in cerebral ischemia reperfusion (I/R) injury. However, the underlying molecular mechanisms remain largely unknown. Recently, emerging evidences suggested that increased mitochondrial biogenesis enabled preventing I/R injury. Here, we sought to determinate whether curcumin alleviates I/R damage through regulation of mitochondrial biogenesis. Sprague-Dawley rats were subjected to a 2-h period of right middle cerebral artery occlusion followed by 24 h of reperfusion. Prior to onset of occlusion, rats had been pretreated with either low (50 mg/kg, intraperitoneal injection) or high (100 mg/kg, intraperitoneal injection) dose of curcumin for 5 days. Consequently, we found that curcumin pretreatment enabled improving neurological deficit, diminishing infarct volume and increasing the number of NeuN-labeled neurons in the I/R rats. Accordingly, the index of mitochondrial biogenesis including nuclear respiratory factor-1, mitochondrial transcription factor A and mitochondrial number significantly down-regulated in I/R rats were reversed by curcumin pretreatment in a dose-dependent manner, and the mitochondrial uncoupling protein 2 presented the similar change. Taken together, our findings provided novel evidence that curcumin may exert neuroprotective effects by increasing mitochondrial biogenesis.


Cerebral ischemia reperfusion Curcumin Mitochondrial biogenesis 



Ischemia reperfusion




Middle cerebral artery occlusion


Nuclear respiratory factors 1


Oxygen glucose deprivation


Peroxisome proliferators-activated receptor γ coactivator-1α


Reactive oxygen species


Reverse transcription


Mitochondrial transcription factor A


Triphenyltetrazolium chloride


Uncoupling protein 2



Our sincere gratitude is extended to Professor Yu Li for technical assistance. This work was supported by the National Science Foundation of China (30500170).


  1. 1.
    Chen SD, Yang DI, Lin TK et al (2011) Chuang, roles of oxidative stress, apoptosis, PGC-1α and mitochondrial biogenesis in cerebral ischemia. Int J Mol Sci 12:7199–7215PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Chen SD, Lin TK, Yang DI et al (2010) Protective effects of peroxisome proliferator-activated receptors gamma coactivator-1alpha against neuronal cell death in the hippocampal CA1 subfield after transient global ischemia. J Neurosci Res 88:605–613PubMedGoogle Scholar
  3. 3.
    Mattiasson G, Shamloo M, Gido G et al (2003) Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med 9:1062–1068PubMedCrossRefGoogle Scholar
  4. 4.
    Niizuma K, Yoshioka H, Chen H et al (2010) Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 1802:92–99PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Franklin JL (2011) Redox regulation of the intrinsic pathway in neuronal apoptosis. Antioxid Redox Signal 14:1437–1448PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Rathore P, Dohare P, Varma S et al (2007) Curcuma oil: reduces early accumulation of oxidative product and is anti-apoptogenic in transient focal ischemia in rat brain. Neurochem Res 33:1672–1682PubMedCrossRefGoogle Scholar
  7. 7.
    Shukla PK, Khanna VK, Ali MM et al (2008) Anti-ischemic effect of curcumin in rat brain. Neurochem Res 33:1036–1043PubMedCrossRefGoogle Scholar
  8. 8.
    Zhao J, Yu S, Zheng W et al (2009) Curcumin improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Neurochem Res 35:374–379PubMedCrossRefGoogle Scholar
  9. 9.
    Zhuang R, Lin MX, Song QY, Li J (2009) Effects of curcumin on the expression of nuclear factor-kappa B and intercellular adhesion molecular 1 in rats with cerebral ischemia-reperfusion injury. Nan Fang Yi Ke Da Xue Xue Bao 29:1153–1155PubMedGoogle Scholar
  10. 10.
    Liu ZJ, Liu W, Liu L et al (2013) Curcumin protects neuron against cerebral ischemia-induced inflammation through improving PPAR-gamma function. Evid Based Complement Altern Med 2013:470975Google Scholar
  11. 11.
    McLeod CJ, Pagel I, Sack MN (2005) The mitochondrial biogenesis regulatory program in cardiac adaptation to ischemia: a putative target for therapeutic intervention. Trends Cardiovasc Med 15:118–123PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang Q, Wu Y, Sha H et al (2012) Early exercise affects mitochondrial transcription factors expression after cerebral ischemia in rats. Int J Mol Sci 13:1670–1679PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Zhang X, Yan H, Yuan Y et al (2013) Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy 9:1321–1333PubMedCrossRefGoogle Scholar
  14. 14.
    Kumari S, Anderson L, Farmer S et al (2012) Hyperglycemia alters mitochondrial fission and fusion proteins in mice subjected to cerebral ischemia and reperfusion. Transl Stroke Res 3:296–304PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Zhang Q, Wu Y, Zhang P et al (2012) Exercise induces mitochondrial biogenesis after brain ischemia in rats. Neuroscience 205:10–17PubMedCrossRefGoogle Scholar
  16. 16.
    Mehta SL, Kumari S, Mendelev N, Li PA (2012) Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia. BMC Neurosci 13:79PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Yin W, Signore AP, Iwai M et al (2008) Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke 39:3057–3063PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Valerio A, Bertolotti P, Delbarba A et al (2011) Glycogen synthase kinase-3 inhibition reduces ischemic cerebral damage, restores impaired mitochondrial biogenesis and prevents ROS production. J Neurochem 116:1148–1159PubMedCrossRefGoogle Scholar
  19. 19.
    Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91Google Scholar
  20. 20.
    Thiyagarajan M, Sharma SS (2004) Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci 74:969–985PubMedCrossRefGoogle Scholar
  21. 21.
    Song W, Huo T, Guo F et al (2013) Globular adiponectin elicits neuroprotection by inhibiting NADPH oxidase-mediated oxidative damage in ischemic stroke. Neuroscience 248C:136–144PubMedCrossRefGoogle Scholar
  22. 22.
    Ma M, Uekawa K, Hasegawa Y et al (2013) Pretreatment with rosuvastatin protects against focal cerebral ischemia/reperfusion injury in rats through attenuation of oxidative stress and inflammation. Brain Res 1519:87–94PubMedCrossRefGoogle Scholar
  23. 23.
    Ashwal S, Tone B, Tian HR et al (1998) Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion editorial comment. Stroke 29:1037–1047PubMedCrossRefGoogle Scholar
  24. 24.
    Fang M, Shen L, Yin H et al (2011) Downregulation of gephyrin in temporal lobe epilepsy neurons in humans and a rat model. Synapse 65:1006–1014PubMedCrossRefGoogle Scholar
  25. 25.
    Nisoli E, Falcone S, Tonello C et al (2004) Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci USA 101:16507–16512PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Zhu L, Liu Z, Feng Z et al (2010) Hydroxytyrosol protects against oxidative damage by simultaneous activation of mitochondrial biogenesis and phase II detoxifying enzyme systems in retinal pigment epithelial cells. J Nutr Biochem 21:1089–1098PubMedCrossRefGoogle Scholar
  27. 27.
    Mehta SL, Li PA (2009) Neuroprotective role of mitochondrial uncoupling protein 2 in cerebral stroke. J Cereb Blood Flow Metab 29:1069–1078PubMedCrossRefGoogle Scholar
  28. 28.
    Liu Y, Chen L, Xu X et al (2009) Both ischemic preconditioning and ghrelin administration protect hippocampus from ischemia/reperfusion and upregulate uncoupling protein-2. BMC Physiol 9:17PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Yang C, Zhang X, Fan H, Liu Y (2009) Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res 1282:133–141PubMedCrossRefGoogle Scholar
  30. 30.
    Jurenka JS (2009) Anti-inflammatory properties of curcumin, a major constituent of curcuma longa: a review of preclinical and clinical research. Altern Med Rev 14:141–153PubMedGoogle Scholar
  31. 31.
    Izem-Meziane M, Djerdjouri B, Rimbaud S et al (2011) Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: protective effect of curcumin. Am J Physiol Heart Circ Physiol 302:H665–H674PubMedCrossRefGoogle Scholar
  32. 32.
    Chen SD, Lin TK, Lin JW et al (2010) Activation of calcium/calmodulin-dependent protein kinase IV and peroxisome proliferator-activated receptor gamma coactivator-1alpha signaling pathway protects against neuronal injury and promotes mitochondrial biogenesis in the hippocampal CA1 subfield after transient global ischemia. J Neurosci Res 88:3144–3154PubMedCrossRefGoogle Scholar
  33. 33.
    Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88:611–638PubMedCrossRefGoogle Scholar
  34. 34.
    Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (pgc-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90PubMedCrossRefGoogle Scholar
  35. 35.
    Lee HC, Wei YH (2005) Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 37:822–834PubMedCrossRefGoogle Scholar
  36. 36.
    Ekstrand MI, Falkenberg M, Rantanen A et al (2004) Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 13:935–944PubMedCrossRefGoogle Scholar
  37. 37.
    St-Pierre J, Lin J, Krauss S et al (2003) Bioenergetic analysis of peroxisome proliferator-activated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells. J Biol Chem 278:26597–26603PubMedCrossRefGoogle Scholar
  38. 38.
    Hann SS, Chen J, Wang Z et al (2013) Targeting EP4 by curcumin through cross talks of AMP-dependent kinase alpha and p38 mitogen-activated protein kinase signaling: the role of PGC-1alpha and Sp1. Cell Signal 25:2566–2574PubMedCrossRefGoogle Scholar
  39. 39.
    Liu ZJ, Liu W, Liu L et al (2013) Curcumin protects neuron against cerebral ischemia-induced inflammation through improving PPAR-gamma function. Evid Based Complement Altern Med. doi: 10.1155/2013/470975 Google Scholar
  40. 40.
    Andrews ZB, Liu ZW, Walllingford N et al (2008) UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature 454:846–851PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Li Liu
    • 1
    • 2
  • Wenchao Zhang
    • 1
  • Li Wang
    • 3
  • Yu Li
    • 4
    • 5
  • Botao Tan
    • 6
  • Xi Lu
    • 1
  • Yushuang Deng
    • 1
  • Yuping Zhang
    • 1
  • Xiuming Guo
    • 1
  • Jun Mu
    • 1
  • Gang Yu
    • 1
  1. 1.Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingPeople’s Republic of China
  2. 2.Department of BrainThe Chongqing Hospital of Traditional Chinese MedicineChongqingPeople’s Republic of China
  3. 3.Chongqing Cancer InstituteChongqingPeople’s Republic of China
  4. 4.Department of PathologyChongqing Medical UniversityChongqingPeople’s Republic of China
  5. 5.Institute of NeuroscienceChongqing Medical UniversityChongqingPeople’s Republic of China
  6. 6.Department of RehabilitationThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingPeople’s Republic of China

Personalised recommendations