Advertisement

Neurochemical Research

, Volume 39, Issue 7, pp 1300–1312 | Cite as

Anti-inflammatory Effect of Tanshinone I in Neuroprotection Against Cerebral Ischemia–Reperfusion Injury in the Gerbil Hippocampus

  • Joon Ha Park
  • Ok kyu Park
  • Jeong-Hwi Cho
  • Bai Hui Chen
  • In Hye Kim
  • Ji Hyeon Ahn
  • Jae-Chul Lee
  • Bing Chun Yan
  • Ki-Yeon Yoo
  • Choong Hyun Lee
  • In Koo Hwang
  • Seung-Hae Kwon
  • Yun Lyul Lee
  • Moo-Ho Won
  • Jung Hoon Choi
Original Paper

Abstract

Tanshinone I (TsI) is an important lipophilic diterpene extracted from Danshen (Radix Salvia miltiorrhizae) and has been used in Asia for the treatment of cerebrovascular diseases such as ischemic stroke. In this study, we examined the neuroprotective effect of TsI against ischemic damage and its neuroprotective mechanism in the gerbil hippocampal CA1 region (CA1) induced by 5 min of transient global cerebral ischemia. Pre-treatment with TsI protected pyramidal neurons from ischemic damage in the stratum pyramidale (SP) of the CA1 after ischemia–reperfusion. The pre-treatment with TsI increased the immunoreactivities and protein levels of anti-inflammatory cytokines [interleukin (IL)-4 and IL-13] in the TsI-treated-sham-operated-groups compared with those in the vehicle-treated-sham-operated-groups; however, the treatment did not increase the immunoreactivities and protein levels of pro-inflammatory cytokines (IL-2 and tumor necrosis factor-α). On the other hand, in the TsI-treated-ischemia-operated-groups, the immunoreactivities and protein levels of all the cytokines were maintained in the SP of the CA1 after transient cerebral ischemia. In addition, we examined that IL-4 injection into the lateral ventricle did not protect pyramidal neurons from ischemic damage. In conclusion, these findings indicate that the pre-treatment with TsI can protect against ischemia-induced neuronal death in the CA1 via the increase or maintenance of endogenous inflammatory cytokines, and exogenous IL-4 does not protect against ischemic damage.

Keywords

Transient global cerebral ischemia Tanshinone I CA1 pyramidal neuron Neuroprotection Pro-inflammatory cytokines Anti-inflammatory cytokines 

Notes

Acknowledgments

The authors would like to thank Mr. Seung Uk Lee for his technical help in this study. This research was supported by 2013 Research Grant from Kangwon National University (12013-1867) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2011-0013933).

References

  1. 1.
    Park JH, Joo HS, Yoo KY et al (2011) Extract from Terminalia chebula seeds protect against experimental ischemic neuronal damage via maintaining SODs and BDNF levels. Neurochem Res 36:2043–2050PubMedCrossRefGoogle Scholar
  2. 2.
    Chuang YC, Lin TK, Huang HY et al (2012) Peroxisome proliferator-activated receptors gamma/mitochondrial uncoupling protein 2 signaling protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus. J Neuroinflammation 9:184PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Auer RN (2004) Hypoglycemic brain damage. Metab Brain Dis 19:169–175PubMedCrossRefGoogle Scholar
  4. 4.
    Kirino T, Sano K (1984) Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocampus. Acta Neuropathol 62:209–218PubMedCrossRefGoogle Scholar
  5. 5.
    Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69PubMedCrossRefGoogle Scholar
  6. 6.
    Wong CH, Crack PJ (2008) Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia–reperfusion injury. Curr Med Chem 15:1–14PubMedCrossRefGoogle Scholar
  7. 7.
    Huang J, Upadhyay UM, Tamargo RJ (2006) Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66:232–245PubMedCrossRefGoogle Scholar
  8. 8.
    Perini F, Morra M, Alecci M et al (2001) Temporal profile of serum anti-inflammatory and pro-inflammatory interleukins in acute ischemic stroke patients. Neurol Sci 22:289–296PubMedCrossRefGoogle Scholar
  9. 9.
    Pahan K, Khan M, Singh I (2000) Interleukin-10 and interleukin-13 inhibit proinflammatory cytokine-induced ceramide production through the activation of phosphatidylinositol 3-kinase. J Neurochem 75:576–582PubMedCrossRefGoogle Scholar
  10. 10.
    Lysiak JJ, Nguyen QA, Kirby JL et al (2003) Ischemia–reperfusion of the murine testis stimulates the expression of proinflammatory cytokines and activation of c-jun N-terminal kinase in a pathway to E-selectin expression. Biol Reprod 69:202–210PubMedCrossRefGoogle Scholar
  11. 11.
    Hossmann KA (2006) Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 26:1057–1083PubMedCrossRefGoogle Scholar
  12. 12.
    Qiao Z, Ma J, Liu H (2011) Evaluation of the antioxidant potential of Salvia miltiorrhiza ethanol extract in a rat model of ischemia–reperfusion injury. Molecules 16:10002–10012PubMedCrossRefGoogle Scholar
  13. 13.
    Lam BY, Lo AC, Sun X et al (2003) Neuroprotective effects of tanshinones in transient focal cerebral ischemia in mice. Phytomedicine 10:286–291PubMedCrossRefGoogle Scholar
  14. 14.
    Kim SY, Moon TC, Chang HW et al (2002) Effects of tanshinone I isolated from Salvia miltiorrhiza bunge on arachidonic acid metabolism and in vivo inflammatory responses. Phytother Res 16:616–620PubMedCrossRefGoogle Scholar
  15. 15.
    Kang BY, Chung SW, Kim SH et al (2000) Inhibition of interleukin-12 and interferon-gamma production in immune cells by tanshinones from Salvia miltiorrhiza. Immunopharmacology 49:355–361PubMedCrossRefGoogle Scholar
  16. 16.
    Lee DS, Lee SH, Noh JG et al (1999) Antibacterial activities of cryptotanshinone and dihydrotanshinone I from a medicinal herb, Salvia miltiorrhiza Bunge. Biosci Biotechnol Biochem 63:2236–2239PubMedCrossRefGoogle Scholar
  17. 17.
    Park OK, Choi JH, Park JH et al (2012) Comparison of neuroprotective effects of five major lipophilic diterpenoids from Danshen extract against experimentally induced transient cerebral ischemic damage. Fitoterapia 83:1666–1674PubMedCrossRefGoogle Scholar
  18. 18.
    Cao Y, Mao X, Sun C et al (2011) Baicalin attenuates global cerebral ischemia/reperfusion injury in gerbils via anti-oxidative and anti-apoptotic pathways. Brain Res Bull 85:396–402PubMedCrossRefGoogle Scholar
  19. 19.
    Penton-Rol G, Marin-Prida J, Pardo-Andreu G et al (2011) C-Phycocyanin is neuroprotective against global cerebral ischemia/reperfusion injury in gerbils. Brain Res Bull 86:42–52PubMedCrossRefGoogle Scholar
  20. 20.
    Tang C, Xue H, Bai C et al (2010) The effects of Tanshinone IIA on blood-brain barrier and brain edema after transient middle cerebral artery occlusion in rats. Phytomedicine 17:1145–1149PubMedCrossRefGoogle Scholar
  21. 21.
    Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130PubMedCrossRefGoogle Scholar
  22. 22.
    Lee CH, Park JH, Yoo KY et al (2011) Pre- and post-treatments with escitalopram protect against experimental ischemic neuronal damage via regulation of BDNF expression and oxidative stress. Exp Neurol 229:450–459PubMedCrossRefGoogle Scholar
  23. 23.
    Loskota WJ, Lomax P, Verity MA (1974) A stereotaxic atlas of the Mongolian gerbil brain (Meriones unguiculatus). Ann Arbor Science, Ann Arbor 157 p (chiefly illus.)Google Scholar
  24. 24.
    Xiong X, Barreto GE, Xu L et al (2011) Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke 42:2026–2032PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Zhang L, Dong LY, Li YJ et al (2012) The microRNA miR-181c controls microglia-mediated neuronal apoptosis by suppressing tumor necrosis factor. J Neuroinflammation 9:211PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Jiang Y, Wei N, Lu T et al (2011) Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats. Neuroscience 172:398–405PubMedCrossRefGoogle Scholar
  27. 27.
    Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Sharma BK, Kumar K (1998) Role of proinflammatory cytokines in cerebral ischemia: a review. Metab Brain Dis 13:1–8PubMedCrossRefGoogle Scholar
  29. 29.
    Amantea D, Nappi G, Bernardi G et al (2009) Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J 276:13–26PubMedCrossRefGoogle Scholar
  30. 30.
    Yoo KY, Hwang IK, Kim JD et al (2008) Antiinflammatory effect of the ethanol extract of Berberis koreana in a gerbil model of cerebral ischemia/reperfusion. Phytother Res 22:1527–1532PubMedCrossRefGoogle Scholar
  31. 31.
    Tripathy D, Grammas P (2009) Acetaminophen inhibits neuronal inflammation and protects neurons from oxidative stress. J Neuroinflammation 6:10PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Elango C, Devaraj SN (2010) Immunomodulatory effect of Hawthorn extract in an experimental stroke model. J Neuroinflammation 7:97PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Zeng L, Wang Y, Liu J et al (2013) Pro-inflammatory cytokine network in peripheral inflammation response to cerebral ischemia. Neurosci Lett 548:4–9PubMedCrossRefGoogle Scholar
  34. 34.
    Yu JT, Lee CH, Yoo KY et al (2010) Maintenance of anti-inflammatory cytokines and reduction of glial activation in the ischemic hippocampal CA1 region preconditioned with lipopolysaccharide. J Neurol Sci 296:69–78PubMedCrossRefGoogle Scholar
  35. 35.
    Yan BC, Kim SK, Park JH et al (2012) Comparison of inflammatory cytokines changes in the hippocampal CA1 region between the young and adult gerbil after transient cerebral ischemia. Brain Res 1461:64–75PubMedCrossRefGoogle Scholar
  36. 36.
    Vila N, Castillo J, Davalos A et al (2000) Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke 31:2325–2329PubMedCrossRefGoogle Scholar
  37. 37.
    Iadecola C, Alexander M (2001) Cerebral ischemia and inflammation. Curr Opin Neurol 14:89–94PubMedCrossRefGoogle Scholar
  38. 38.
    Zhu Y, Saito K, Murakami Y et al (2006) Early increase in mRNA levels of pro-inflammatory cytokines and their interactions in the mouse hippocampus after transient global ischemia. Neurosci Lett 393:122–126PubMedCrossRefGoogle Scholar
  39. 39.
    Zurawski G, de Vries JE (1994) Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol Today 15:19–26PubMedCrossRefGoogle Scholar
  40. 40.
    Wang P, Wu P, Siegel MI et al (1995) Interleukin (IL)-10 inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem 270:9558–9563PubMedCrossRefGoogle Scholar
  41. 41.
    te Velde AA, Huijbens RJ, Heije K et al (1990) Interleukin-4 (IL-4) inhibits secretion of IL-1 beta, tumor necrosis factor alpha, and IL-6 by human monocytes. Blood 76:1392–1397Google Scholar
  42. 42.
    de Waal MR, Figdor CG, Huijbens R et al (1993) Effects of IL-13 on phenotype, cytokine production, and cytotoxic function of human monocytes. Comparison with IL-4 and modulation by IFN-gamma or IL-10. J Immunol 151:6370–6381Google Scholar
  43. 43.
    Yang MS, Park EJ, Sohn S et al (2002) Interleukin-13 and -4 induce death of activated microglia. Glia 38:273–280PubMedCrossRefGoogle Scholar
  44. 44.
    Ledeboer A, Breve JJ, Poole S et al (2000) Interleukin-10, interleukin-4, and transforming growth factor-beta differentially regulate lipopolysaccharide-induced production of pro-inflammatory cytokines and nitric oxide in co-cultures of rat astroglial and microglial cells. Glia 30:134–142PubMedCrossRefGoogle Scholar
  45. 45.
    Shin WH, Lee DY, Park KW et al (2004) Microglia expressing interleukin-13 undergo cell death and contribute to neuronal survival in vivo. Glia 46:142–152PubMedCrossRefGoogle Scholar
  46. 46.
    Park KW, Lee DY, Joe EH et al (2005) Neuroprotective role of microglia expressing interleukin-4. J Neurosci Res 81:397–402PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Joon Ha Park
    • 1
  • Ok kyu Park
    • 2
  • Jeong-Hwi Cho
    • 1
  • Bai Hui Chen
    • 3
  • In Hye Kim
    • 1
  • Ji Hyeon Ahn
    • 1
  • Jae-Chul Lee
    • 1
  • Bing Chun Yan
    • 4
  • Ki-Yeon Yoo
    • 5
  • Choong Hyun Lee
    • 6
  • In Koo Hwang
    • 7
  • Seung-Hae Kwon
    • 2
  • Yun Lyul Lee
    • 3
  • Moo-Ho Won
    • 1
  • Jung Hoon Choi
    • 8
  1. 1.Department of Neurobiology, School of MedicineKangwon National UniversityChuncheonSouth Korea
  2. 2.Division of Analytical Bio-imaging, Chuncheon CenterKorea Basic Science InstituteChuncheonSouth Korea
  3. 3.Department of Physiology, Institute of Neurodegeneration and Neuroregeneration, College of MedicineHallym UniversityChuncheonSouth Korea
  4. 4.Institute of Integrative Traditional and Western Medicine, Medical CollegeYangzhou UniversityYangzhouChina
  5. 5.Department of Oral Anatomy, College of Dentistry and Research Institute of Oral ScienceGangneung-Wonju National UniversityGangneungSouth Korea
  6. 6.Department of Pharmacy, College of PharmacyDankook UniversityCheonanSouth Korea
  7. 7.Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary ScienceSeoul National UniversitySeoulSouth Korea
  8. 8.Department of Anatomy, College of Veterinary MedicineKangwon National UniversityChuncheonSouth Korea

Personalised recommendations