Neurochemical Research

, Volume 39, Issue 7, pp 1206–1218 | Cite as

Citicoline Protects Brain Against Closed Head Injury in Rats Through Suppressing Oxidative Stress and Calpain Over-Activation

  • Ke Qian
  • Yi Gu
  • Yumei Zhao
  • Zhenzong Li
  • Ming Sun
Original Paper


Citicoline, a natural compound that functions as an intermediate in the biosynthesis of cell membrane phospholipids, is essential for membrane integrity and repair. It has been reported to protect brain against trauma. This study was designed to investigate the protective effects of citicoline on closed head injury (CHI) in rats. Citicoline (250 mg/kg i.v. 30 min and 4 h after CHI) lessened body weight loss, and improved neurological functions significantly at 7 days after CHI. It markedly lowered brain edema and blood–brain barrier permeability, enhanced the activities of superoxide dismutase and the levels of glutathione, reduced the levels of malondialdehyde and lactic acid. Moreover, citicoline suppressed the activities of calpain, and enhanced the levels of calpastatin, myelin basic protein and αII-spectrin in traumatic tissue 24 h after CHI. Also, it attenuated the axonal and myelin sheath damage in corpus callosum and the neuronal cell death in hippocampal CA1 and CA3 subfields 7 days after CHI. These data demonstrate the protection of citicoline against white matter and grey matter damage due to CHI through suppressing oxidative stress and calpain over-activation, providing additional support to the application of citicoline for the treatment of traumatic brain injury.


Citicoline Closed head injury Oxidative stress Calpain Corpus callosum Hippocampus 



All authors have read the manuscript and approved the final version of the manuscript. We thank Miss Jingjing Yang for excellent technical assistance.

Conflict of interest

All authors have read the manuscript and the journal’s policy on the disclosure of potential conflicts of interest, and all authors have none to declare.


  1. 1.
    Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99(1):4–9. doi: 10.1093/bja/aem131 PubMedCrossRefGoogle Scholar
  2. 2.
    Slemmer JE, Shacka JJ, Sweeney MI, Weber JT (2008) Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem 15(4):404–414. doi: 10.2174/092986708783497337 PubMedCrossRefGoogle Scholar
  3. 3.
    Greve MW, Zink BJ (2009) Pathophysiology of traumatic brain injury. Mt Sinai J Med 76(2):97–104. doi: 10.1002/msj.20104 PubMedCrossRefGoogle Scholar
  4. 4.
    Saatman KE, Creed J, Raghupathi R (2010) Calpain as a therapeutic target in traumatic brain injury. Neurotherapeutics 7(1):31–42. doi: 10.1016/j.nurt.2009.11.002 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics. J Neurosurg 80(2):291–300. doi: 10.3171/jns.1994.80.2.0291 PubMedCrossRefGoogle Scholar
  6. 6.
    Cernak I (2005) Animal models of head trauma. NeuroRx 2(3):410–422. doi: 10.1602/neurorx.2.3.410 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Griesemer D, Mautes AM (2007) Closed head injury causes hyperexcitability in rat hippocampal CA1 but not in CA3 pyramidal cells. J Neurotrauma 24(12):1823–1832. doi: 10.1089/neu.2006.0237 PubMedCrossRefGoogle Scholar
  8. 8.
    Dempsey RJ, Raghavendra Rao VL (2003) Cytidinediphosphocholine treatment to decrease traumatic brain injury-induced hippocampal neuronal death, cortical contusion volume, and neurological dysfunction in rats. J Neurosurg 98(4):867–873. doi: 10.3171/jns.2003.98.4.0867 PubMedCrossRefGoogle Scholar
  9. 9.
    Alvarez-Sabín J, Román GC (2011) Citicoline in vascular cognitive impairment and vascular dementia after stroke. Stroke 42(1 Suppl):S40–S43. doi: 10.1161/STROKEAHA.110.606509 PubMedCrossRefGoogle Scholar
  10. 10.
    Başkaya MK, Doğan A, Rao AM, Dempsey RJ (2000) Neuroprotective effects of citicoline on brain edema and blood-brain barrier breakdown after traumatic brain injury. J Neurosurg 92(3):448–452. doi: 10.3171/jns.2000.92.3.0448 PubMedCrossRefGoogle Scholar
  11. 11.
    Secades JJ (2011) Citicoline: pharmacological and clinical review, 2010 update. Rev Neurol 52(Suppl 2):S1–S62PubMedGoogle Scholar
  12. 12.
    Adibhatla RM, Hatcher JF (2005) Cytidine 5′-diphosphocholine (CDP-choline) in stroke and other CNS disorders. Neurochem Res 30(1):15–23. doi: 10.1007/s11064-004-9681-8 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Sun M, Zhao Y, Gu Y, Zhang Y (2013) Protective effects of taurine against closed head injury in rats. J Neurotrauma. doi: 10.1089/neu.2012.2432 Google Scholar
  14. 14.
    Sobrado M, López MG, Carceller F, García AG, Roda JM (2003) Combined nimodipine and citicoline reduce infarct size, attenuate apoptosis and increase bcl-2 expression after focal cerebral ischemia. Neuroscience 118(1):107–113. doi: 10.1016/S0306-4522 PubMedCrossRefGoogle Scholar
  15. 15.
    Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32(11):2682–2688. doi: 10.1161/hs1101.098367 PubMedCrossRefGoogle Scholar
  16. 16.
    Lin TN, He YY, Wu G, Khan M, Hsu CY (1993) Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke 24(21):117–121. doi: 10.1161/01.STR.24.1.117 PubMedCrossRefGoogle Scholar
  17. 17.
    Smith SL, Scherch HM, Hall ED (1996) Protective effects of tirilazad mesylate and metabolite U-89678 against blood-brain barrier damage after subarachnoid hemorrhage and lipid peroxidative neuronal injury. J Neurosurg 84(2):229–233. doi: 10.3171/jns.1996.84.2.0229 PubMedCrossRefGoogle Scholar
  18. 18.
    Chen G, Zhang S, Shi J, Ai J, Qi M, Hang C (2009) Simvastatin reduces secondary brain injury caused by cortical contusion in rats: possible involvement of TLR4/NF-kappaB pathway. Exp Neurol 216(2):398–406. doi: 10.1016/j.expneurol.2008.12.019 PubMedCrossRefGoogle Scholar
  19. 19.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  20. 20.
    Moss DE, Gutierrez YR, Perez RG, Kobayashi H (1991) Simple spectrophotometric assay for calcium-activated neutral proteases (calpains). Pharmacol Biochem Behav 39(2):495–497. doi: 10.1016/0091-3057(91)90214-M PubMedCrossRefGoogle Scholar
  21. 21.
    Yoshida K, Yamasaki Y, Kawashima S (1993) Calpain activity alters in rat myocardial subfractions after ischaemia or reperfusion. Biochim Biophys Acta 1182(2):215–220. doi: 10.1016/0925-4439(93)90143-O PubMedCrossRefGoogle Scholar
  22. 22.
    Sun M, Zhao Y, Gu Y, Xu C (2009) Inhibition of nNOS reduces ischemic cell death through down-regulating calpain and caspase-3 after experimental stroke. Neurochem Int 54(5–6):339–346. doi: 10.1016/j.neuint.2008.12.017 PubMedCrossRefGoogle Scholar
  23. 23.
    Pantoni L, Garcia JH, Gutierrez JA (1996) Cerebral white matter is highly vulnerable to ischemia. Stroke 27(9):1641–1647. doi: 10.1161/01.STR.27.9.1641 PubMedCrossRefGoogle Scholar
  24. 24.
    Cheng CM, Joncas G, Reinhardt RR, Farrer R, Quarles R, Janssen J, McDonald MP, Crawley JN, Powell-Braxton L, Bondy CA (1998) Biochemical and morphometric analyses show that myelination in the insulin-like growth factor 1 null brain is proportionate to its neuronal composition. J Neurosci 18(15):5673–5681PubMedGoogle Scholar
  25. 25.
    Schäbitz WR, Li F, Fisher M (2000) The N-methyl-D-aspartate antagonist CNS 1102 protects cerebral gray and white matter from ischemic injury following temporary focal ischemia in rats. Stroke 31(7):1709–1714. doi: 10.1161/01.STR.31.7.1709 PubMedCrossRefGoogle Scholar
  26. 26.
    Wang KK (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23(1):20–26. doi: 10.1016/S0166-2236(99)01479-4 PubMedCrossRefGoogle Scholar
  27. 27.
    Massaro AR, Scivoletto G, Tonali P (1990) Cerebrospinal fluid markers in neurological disorders. Ital J Neurol Sci 11(6):537–547. doi: 10.1007/BF02337436 PubMedCrossRefGoogle Scholar
  28. 28.
    Palace J (2003) Clinical and laboratory characteristics of secondary progressive MS. J Neurol Sci 206(2):131–134. doi: 10.1016/S0022-510X(02)00419-7 PubMedCrossRefGoogle Scholar
  29. 29.
    Shohami E, Beit-Yannai E, Horowitz M, Kohen R (1997) Oxidative stress in closed-head injury: brain antioxidant capacity as an indicator of functional outcome. J Cereb Blood low Metab 17(10):1007–1019. doi: 10.1097/00004647-199710000-00002 CrossRefGoogle Scholar
  30. 30.
    Ustün ME, Duman A, Oğun CO, Vatansev H, Ak A (2001) Effects of nimodipine and magnesium sulfate on endogenous antioxidant levels in brain tissue after experimental head trauma. J Neurosurg Anesthesiol 13(3):227–232. doi: 10.1097/00008506-200107000-00008 PubMedCrossRefGoogle Scholar
  31. 31.
    Bayir H, Kochanek PM, Clark RS (2003) Traumatic brain injury in infants and children: mechanisms of secondary damage and treatment in the intensive care unit. Crit Care Clin 19(3):529–549. doi: 10.1016/S0749-0704(03)00014-9 PubMedCrossRefGoogle Scholar
  32. 32.
    Dhillon HS, Carman HM, Zhang D, Scheff SW, Prasad MR (1999) Severity of experimental brain injury on lactate and free fatty acid accumulation and Evans blue extravasation in the rat cortex and hippocampus. J Neurotrauma 16(6):455–469. doi: 10.1089/neu.1999.16.455 PubMedCrossRefGoogle Scholar
  33. 33.
    Homayoun P, Parkins NE, Soblosky J, Carey ME, Rodriguez de Turco EB, Bazan NG (2000) Cortical impact injury in rats promotes a rapid and sustained increase in polyunsaturated free fatty acids and diacylglycerols. Neurochem Res 25(2):269–276. doi: 10.1023/A:1007583806138 PubMedCrossRefGoogle Scholar
  34. 34.
    Phillis JW, O’Regan MH (2004) A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. Brain Res Brain Res Rev 44(1):13–47. doi: 10.1016/j.brainresrev.2003.10.002 PubMedCrossRefGoogle Scholar
  35. 35.
    Adibhatla RM, Hatcher JF (2006) Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic Biol Med 40(3):376–387. doi: 10.1016/j.freeradbiomed.2005.08.044 CrossRefGoogle Scholar
  36. 36.
    Arrigoni E, Averet N, Cohadon F (1987) Effects of CDP-choline on phospholipase A2 and cholinephosphotransferase activities following a cryogenic brain injury in the rabbit. Biochem Pharmacol 36(21):3697–3700. doi: 10.1016/0006-2952(87)90022-0 PubMedCrossRefGoogle Scholar
  37. 37.
    Knapp S, Wurtman RJ (1999) Enhancement of free fatty acid incorporation into phospholipids by choline plus cytidine. Brain Res 822(1–2):52–59. doi: 10.1016/S0006-8993(99)01072-0 PubMedCrossRefGoogle Scholar
  38. 38.
    Adibhatla RM, Hatcher JF, Dempsey RJ (2003) Phospholipase A2, hydroxyl radicals, and lipid peroxidation in transient cerebral ischemia. Antioxid Redox Signal 5(5):647–654. doi: 10.1089/152308603770310329 PubMedCrossRefGoogle Scholar
  39. 39.
    Adibhatla RM, Hatcher JF, Dempsey RJ (2001) Effects of citicoline on phospholipid and glutathione levels in transient cerebral ischemia. Stroke 32(10):2376–2381. doi: 10.1161/hs1001.096010 PubMedCrossRefGoogle Scholar
  40. 40.
    Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62(6):649–671. doi: 10.1016/S0301-0082(99)00060-X PubMedCrossRefGoogle Scholar
  41. 41.
    Siesjo BK, Bendek G, Koide T, Westerberg E, Wieloch T (1985) Influence of acidosis on lipid peroxidation in brain tissues in vitro. J Cereb Blood Flow Metab 5(2):253–258. doi: 10.1038/jcbfm.1985.32 PubMedCrossRefGoogle Scholar
  42. 42.
    Bralet J, Bouvier C, Schrieber L, Boquillon M (1991) Effect of acidosis on lipid peroxidation in brain slices. Brain Res 539(1):175–177. doi: 10.1016/0006-8993(91)90703-X PubMedCrossRefGoogle Scholar
  43. 43.
    Kakihana M, Fukuda N, Suno M, Nagaoka A (1988) Effects of CDP-choline on neurologic deficits and cerebral glucose metabolism in a rat model of cerebral ischemia. Stroke 19(2):217–222. doi: 10.1161/01.STR.19.2.217 PubMedCrossRefGoogle Scholar
  44. 44.
    Ghosh S, Das N, Mandal AK, Dungdung SR, Sarkar S (2010) Mannosylated liposomal cytidine 5′diphosphocholine prevent age related global moderate cerebral ischemia reperfusion induced mitochondrial cytochrome c release in aged rat brain. Neuroscience 171(4):1287–1299. doi: 10.1016/j.neuroscience.2010.09.049 PubMedCrossRefGoogle Scholar
  45. 45.
    Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83(3):731–801. doi: 10.1152/physrev.00029.2002 PubMedGoogle Scholar
  46. 46.
    Riederer BM, Zagon IS, Goodman SR (1986) Brain spectrin (240/235) and brain spectrin (240/235E): two distinct spectrin subtypes with different locations within mammalian neural cells. J Cell Biol 102(6):2088–2097. doi: 10.1083/jcb.102.6.2088 PubMedCrossRefGoogle Scholar
  47. 47.
    Goodman SR, Zimmer WE, Clark MB, Zagon IS, Barker JE, Bloom ML (1995) Brain spectrin: of mice and men. Brain Res Bull 36(6):593–606. doi: 10.1016/0361-9230(94)00264-2 PubMedCrossRefGoogle Scholar
  48. 48.
    McGinn MJ, Kelley BJ, Akinyi L, Oli MW, Liu MC, Hayes RL, Wang KK, Povlishock JT (2009) Biochemical, structural, and biomarker evidence for calpain-mediated cytoskeletal change after diffuse brain injury uncomplicated by contusion. J Neuropathol Exp Neurol 68(3):241–249. doi: 10.1097/NEN.0b013e3181996bfe PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Reeves TM, Greer JE, Vanderveer AS, Phillips LL (2010) Proteolysis of submembrane cytoskeletal proteins ankyrin-G and αII-spectrin following diffuse brain injury: a role in white matter vulnerability at Nodes of Ranvier. Brain Pathol 20(6):1055–1068. doi: 10.1111/j.1750-3639.2010.00412.x PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Liu MC, Akle V, Zheng W, Kitlen J, O’Steen B, Larner SF, Dave JR, Tortella FC, Hayes RL, Wang KK (2006) Extensive degradation of myelin basic protein isoforms by calpain following traumatic brain injury. J Neurochem 98(3):700–712. doi: 10.1111/j.1471-4159.2006.03882.x PubMedCrossRefGoogle Scholar
  51. 51.
    Annunziato L, Amoroso S, Pannaccione A, Cataldi M, Pignataro G, D’Alessio A, Sirabella R, Secondo A, Sibaud L, Di Renzo GF (2003) Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol Lett 139(2–3):125–133. doi: 10.1016/S0378-4274(02)00427-7 PubMedCrossRefGoogle Scholar
  52. 52.
    Bevers MB, Neumar RW (2008) Mechanistic role of calpains in postischemic neurodegeneration. J Cereb Blood Flow Metab 28(4):655–673. doi: 10.1038/sj.jcbfm.9600595 PubMedCrossRefGoogle Scholar
  53. 53.
    Mustafa AG, Singh IN, Wang J, Carrico KM, Hall ED (2010) Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals. J Neurochem 114(1):271–280. doi: 10.1111/j.1471-4159.2010.06749.x PubMedCentralPubMedGoogle Scholar
  54. 54.
    Mustafa AG, Wang JA, Carrico KM, Hall ED (2011) Pharmacological inhibition of lipid peroxidation attenuates calpain-mediated cytoskeletal degradation after traumatic brain injury. J Neurochem 117(3):579–588. doi: 10.1111/j.1471-4159.2011.07228.x PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Miura S, Ishida-Nakajima W, Ishida A, Kawamura M, Ohmura A, Oguma R, Sato Y, Takahashi T (2009) Ascorbic acid protects the newborn rat brain from hypoxic-ischemia. Brain Dev 31(4):307–317. doi: 10.1016/j.braindev.2008.06.010 PubMedCrossRefGoogle Scholar
  56. 56.
    Buki A, Farkas O, Doczi T, Povlishock JT (2003) Preinjury administration of the calpain inhibitor MDL-28170 attenuates traumatically induced axonal injury. J Neurotrauma 20(3):261–268. doi: 10.1089/089771503321532842 PubMedCrossRefGoogle Scholar
  57. 57.
    Ai J, Liu E, Wang J, Chen Y, Yu J, Baker AJ (2007) Calpain inhibitor MDL-28170 reduces the functional and structural deterioration of corpus callosum following fluid percussion injury. J Neurotrauma 24(6):960–978. doi: 10.1089/neu.2006.0224 PubMedCrossRefGoogle Scholar
  58. 58.
    Adibhatla RM, Hatcher JF (2003) Citicoline decreases phospholipase A2 stimulation and hydroxyl radical generation in transient cerebral ischemia. J Neurosci Res 73(3):308–315. doi: 10.1002/jnr.10672 PubMedCrossRefGoogle Scholar
  59. 59.
    Galletti P, De Rosa M, Nappi MA, Pontoni G, del Piano L, Salluzzo A, Zappia V (1985) Transport and metabolism of double-labelled CDPcholine in mammalian tissues. Biochem Pharmacol 34(23):4121–4130PubMedCrossRefGoogle Scholar
  60. 60.
    Aguilar J, Giménez R, Bachs O, Enrich C, Agut J (1983) Cerebral subcellular distribution of CDP-choline and/or its metabolites after oral administration of methyl-14C CDP-choline. Arzneimittelforschung 33(7A):1051–1053PubMedGoogle Scholar
  61. 61.
    Başkaya MK, Rao AM, Doğan A, Donaldson D, Dempsey RJ (1997) The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett 226(1):33–36. doi: 10.1016/s0304-3940(97)00239-5 PubMedCrossRefGoogle Scholar
  62. 62.
    Lopez Gonzalez-Coviella I, Agut J, Von Borstel R, Wurtman RJ (1987) Metabolism of cytidine (5′)-diphosphocholine (CDP-choline) following oral and intravenous administration to the human and the rat. Neurochem Int 11(3):293–297. doi: 10.1016/0197-0186(87)90049-0 CrossRefGoogle Scholar
  63. 63.
    Zafonte RD, Bagiella E, Ansel BM, Novack TA, Friedewald WT, Hesdorffer DC, Timmons SD, Jallo J, Eisenberg H, Hart T, Ricker JH, Diaz-Arrastia R, Merchant RE, Temkin NR, Melton S, Dikmen SS (2012) Effect of citicoline on functional and cognitive status among patients with traumatic brain injury: citicoline brain injury treatment trial (COBRIT). JAMA 308(19):1993–2000. doi: 10.1001/jama.2012.13256 PubMedCrossRefGoogle Scholar
  64. 64.
    Dávalos A, Alvarez-Sabín J, Castillo J, Díez-Tejedor E, Ferro J, Martínez-Vila E, Serena J, Segura T, Cruz VT, Masjuan J, Cobo E, Secades JJ, International Citicoline Trial on acUte Stroke (ICTUS) trial investigators (2012) Citicoline in the treatment of acute ischaemic stroke: an international, randomised, multicentre, placebo-controlled study (ICTUS trial). Lancet 380(9839):349–357. doi: 10.1016/S0140-6736(12)60813-7 PubMedCrossRefGoogle Scholar
  65. 65.
    Fresta M, Puglisi G (1999) Reduction of maturation phenomenon in cerebral ischemia with CDP-choline-loaded liposomes. Pharm Res 16:1843–1849. doi: 10.1023/A:1018999225435 PubMedCrossRefGoogle Scholar
  66. 66.
    Fresta M, Puglisi G, Di Giacomo C, Russo A (1994) Liposomes as in vivo carriers for citicoline: effects on rat cerebral post-ischaemic reperfusion. J Pharm Pharmacol 46(12):974–981. doi: 10.1111/j.2042-7158.1994.tb03252.x PubMedCrossRefGoogle Scholar
  67. 67.
    Adibhatla RM, Hatcher JF (1058) Tureyen K (2005) CDP-choline liposomes provide significant reduction in infarction over free CDP-choline in stroke. Brain Res 1–2:193–197. doi: 10.1016/j.brainres.2005.07.067 Google Scholar
  68. 68.
    Adibhatla RM (2013) Citicoline in stroke and TBI clinical trials. Nat Rev Neurol 9(3):173. doi: 10.1038/nrneurol.2012.166-c1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ke Qian
    • 1
  • Yi Gu
    • 2
  • Yumei Zhao
    • 2
  • Zhenzong Li
    • 3
  • Ming Sun
    • 2
  1. 1.Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingPeople’s Republic of China
  2. 2.Department of Neuropharmacology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingPeople’s Republic of China
  3. 3.Department of Experimental Zoology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingPeople’s Republic of China

Personalised recommendations