Neurochemical Research

, Volume 39, Issue 5, pp 941–949 | Cite as

Limited Energy Supply in Müller Cells Alters Glutamate Uptake

  • Anne Katrine Toft-Kehler
  • Dorte Marie Skytt
  • Kristian Arild Poulsen
  • Charlotte Taul Brændstrup
  • Georgi Gegelashvili
  • Helle Waagepetersen
  • Miriam Kolko
Original Paper


The viability of retinal ganglion cells (RGC) is essential for the maintenance of visual function. RGC homeostasis is maintained by the surrounding retinal glial cells, the Müller cells, which buffer the extracellular concentration of neurotransmitters and provide the RGCs with energy. This study evaluates if glucose-deprivation of Müller cells interferes with their ability to remove glutamate from the extracellular space. The human Müller glial cell line, Moorfields/Institute of Ophthalmology-Müller 1, was used to study changes in glutamate uptake. Excitatory amino acid transporter (EAAT) proteins were up-regulated in glucose-deprived Müller cells and glutamate uptake was significantly increased in the absence of glucose. The present findings revealed an up-regulation of EAAT1 and EAAT2 in glucose-deprived Müller cells as well as an increased ability to take up glutamate. Hence, glucose deprivation may result in an increased ability to protect RGCs from glutamate-induced excitotoxicity, whereas malfunction of glutamate uptake in Müller cells may contribute to retinal neurodegeneration.


Glutamate excitotoxicity EAAT Müller cells Retinal ganglion cells Neuroprotection 



The authors thank technician Maja Udsen, Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark for skillful assistance to the study and Dr. Anna Rodriquez-Kern for EAAT-antibodies. The study was supported by The Danish Eye Health Society, The Danish Medical Research Council (Grant no. 0602-02113B) and The Lundbeck Foundation (Grant no. R88-A9077-B1012).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Quigley HA (1996) Number of people with glaucoma worldwide. Br J Ophthalmol 80:389–393PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ, Zack DJ (1995) Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 36:774–786PubMedGoogle Scholar
  3. 3.
    Dreyer EB (1998) A proposed role for excitotoxicity in glaucoma. J Glaucoma 7:62–67PubMedCrossRefGoogle Scholar
  4. 4.
    Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA (1996) Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 114:299–305PubMedCrossRefGoogle Scholar
  5. 5.
    Stitt AW, Chakravarthy U, Gardiner TA, Archer DB (1996) Endothelin-like immunoreactivity and receptor binding in the choroid and retina. Curr Eye Res 15:111–117PubMedCrossRefGoogle Scholar
  6. 6.
    Sugiyama T, Moriya S, Oku H, Azuma I (1995) Association of endothelin-1 with normal tension glaucoma: clinical and fundamental studies. Surv Ophthalmol 39(Suppl 1):S49–S56PubMedCrossRefGoogle Scholar
  7. 7.
    Wollensak G, Schaefer HE, Ihling C (1998) An immunohistochemical study of endothelin-1 in the human eye. Curr Eye Res 17:541–545PubMedCrossRefGoogle Scholar
  8. 8.
    Barbour B, Brew H, Attwell D (1988) Electrogenic glutamate uptake in glial cells is activated by intracellular potassium. Nature 335:433–435PubMedCrossRefGoogle Scholar
  9. 9.
    Newman EA (1985) Membrane physiology of retinal glial (Müller) cells. J Neurosci 5:2225–2239PubMedGoogle Scholar
  10. 10.
    Newman E, Reichenbach A (1996) The Müller cell: a functional element of the retina. Trends Neurosci 19:307–312PubMedCrossRefGoogle Scholar
  11. 11.
    Bringmann A, Pannicke T, Biedermann B, Francke M, Iandiev I, Grosche J, Wiedemann P, Albrecht J, Reichenbach A (2009) Role of retinal glial cells in neurotransmitter uptake and metabolism. Neurochem Int 54:143–160PubMedCrossRefGoogle Scholar
  12. 12.
    Kawasaki A, Otori Y, Barnstable CJ (2000) Müller cell protection of rat retinal ganglion cells from glutamate and nitric oxide neurotoxicity. Invest Ophthalmol Vis Sci 41:3444–3450PubMedGoogle Scholar
  13. 13.
    Harada T, Harada C, Nakamura K, Quah H-MA, Okumura A, Namekata K, Saeki T, Aihara M, Yoshida H, Mitani A, Tanaka K (2007) The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. J Clin Invest 117:1763–1770PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Furuya T, Pan Z, Kashiwagi K (2012) Role of retinal glial cell glutamate transporters in retinal ganglion cell survival following stimulation of NMDA receptor. Curr Eye Res 37:170–178PubMedCrossRefGoogle Scholar
  15. 15.
    Bai N, Aida T, Yanagisawa M, Katou K, Sakimura K, Mishina M, Tanaka K (2013) NMDA receptor subunits have different roles in NMDA-induced neurotoxicity in the retina. Mol Brain 6:34PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kanai Y, Hediger MA (2004) The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflug Arch 447:469–479CrossRefGoogle Scholar
  17. 17.
    Rauen T, Rothstein JD, Wässle H (1996) Differential expression of three glutamate transporter subtypes in the rat retina. Cell Tissue Res 286:325–336PubMedCrossRefGoogle Scholar
  18. 18.
    Rauen T, Taylor WR, Kuhlbrodt K, Wiessner M (1998) High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance. Cell Tissue Res 291:19–31PubMedCrossRefGoogle Scholar
  19. 19.
    Imasawa M, Kashiwagi K, Iizuka Y, Tanaka M, Tsukahara S (2005) Different expression role among glutamate transporters in rat retinal glial cells under various culture conditions. Brain Res Mol Brain Res 142:1–8PubMedCrossRefGoogle Scholar
  20. 20.
    Kugler P, Beyer A (2003) Expression of glutamate transporters in human and rat retina and rat optic nerve. Histochem Cell Biol 120:199–212PubMedCrossRefGoogle Scholar
  21. 21.
    Zhao J-W, Yang X-L (2001) Glutamate transporter EAAC1 is expressed on Müller cells of lower vertebrate retinas. J Neurosci Res 66:89–95PubMedCrossRefGoogle Scholar
  22. 22.
    Pow DV, Barnett NL (2000) Developmental expression of excitatory amino acid transporter 5: a photoreceptor and bipolar cell glutamate transporter in rat retina. Neurosci Lett 280:21–24PubMedCrossRefGoogle Scholar
  23. 23.
    Fyk-Kolodziej B, Qin P, Dzhagaryan A, Pourcho RG (2004) Differential cellular and subcellular distribution of glutamate transporters in the cat retina. Vis Neurosci 21:551–565PubMedCrossRefGoogle Scholar
  24. 24.
    Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105PubMedCrossRefGoogle Scholar
  25. 25.
    Derouiche A, Rauen T (1995) Coincidence of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearance. J Neurosci Res 42:131–143PubMedCrossRefGoogle Scholar
  26. 26.
    Ola MS, Hosoya K-I, LaNoue KF (2011) Regulation of glutamate metabolism by hydrocortisone and branched chain keto acids in cultured rat retinal Müller cells (TR-MUL). Neurochem Int 59:656–663PubMedCrossRefGoogle Scholar
  27. 27.
    Noraberg J, Poulsen FR, Blaabjerg M, Kristensen BW, Bonde C, Montero M, Meyer M, Gramsbergen JB, Zimmer J (2005) Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair. Curr Drug Targets: CNS Neurol Disord 4:435–452Google Scholar
  28. 28.
    Raval AP, Bramlett H, Perez-Pinzon MA (2006) Estrogen preconditioning protects the hippocampal CA1 against ischemia. Neuroscience 141:1721–1730PubMedCrossRefGoogle Scholar
  29. 29.
    Pringle AK, Iannotti F, Wilde GJC, Chad JE, Seeley PJ, Sundstrom LE (2011) Neuroprotection by both NMDA and non-NMDA receptor antagonists in in vitro ischemia. Brain Res 755:36–46CrossRefGoogle Scholar
  30. 30.
    Limb GA, Salt TE, Munro PMG, Moss SE, Khaw PT (2002) In vitro characterization of a spontaneously immortalized human Müller cell line (MIO-M1). Invest Ophthalmol Vis Sci 43:864–869PubMedGoogle Scholar
  31. 31.
    Brown AM, Tekkök SB, Ransom BR (2003) Glycogen regulation and functional role in mouse white matter. J Physiol (Lond) 549:501–512CrossRefGoogle Scholar
  32. 32.
    Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85PubMedCrossRefGoogle Scholar
  33. 33.
    Drejer J, Larsson OM, Schousboe A (1983) Characterization of uptake and release processes for D- and L-aspartate in primary cultures of astrocytes and cerebellar granule cells. Neurochem Res 8:231–243PubMedCrossRefGoogle Scholar
  34. 34.
    Nucci CC, Tartaglione RR, Rombolà LL, Morrone LA, Fazzi E, Bagetta G (2005) Neurochemical evidence to implicate elevated glutamate in the mechanisms of high intraocular pressure (IOP)-induced retinal ganglion cell death in rat. Neurotoxicology 26:7CrossRefGoogle Scholar
  35. 35.
    Adachi K, Kashii S, Masai H, Ueda M, Morizane C, Kaneda K, Kume T, Akaike A, Honda Y (1998) Mechanism of the pathogenesis of glutamate neurotoxicity in retinal ischemia. Graefes Arch Clin Exp Ophthalmol 236:766–774PubMedCrossRefGoogle Scholar
  36. 36.
    Martin KRGK, Levkovitch-Verbin HH, Valenta DD, Baumrind L, Pease ME, Quigley HA (2002) Retinal glutamate transporter changes in experimental glaucoma and after optic nerve transection in the rat. Invest Ophthalmol Vis Sci 43:2236–2243PubMedGoogle Scholar
  37. 37.
    Mawrin C, Pap T, Pallas M, Dietzmann K, Behrens-Baumann W, Vorwerk CK (2003) Changes of retinal glutamate transporter GLT-1 mRNA levels following optic nerve damage. Mol Vis 9:10–13PubMedGoogle Scholar
  38. 38.
    Romano CC, Price MTM, Almli TT, Olney JWJ (1998) Excitotoxic neurodegeneration induced by deprivation of oxygen and glucose in isolated retina. Invest Ophthalmol Vis Sci 39:416–423PubMedGoogle Scholar
  39. 39.
    Luo X, Lambrou GN, Sahel JA, Hicks D (2001) Hypoglycemia induces general neuronal death, whereas hypoxia and glutamate transport blockade lead to selective retinal ganglion cell death in vitro. Invest Ophthalmol Vis Sci 42:2695–2705PubMedGoogle Scholar
  40. 40.
    Emery M, Schorderet DF, Roduit R (2011) Acute hypoglycemia induces retinal cell death in mouse. PLoS ONE 6:e21586PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249PubMedCrossRefGoogle Scholar
  42. 42.
    Johansen ML, Bak LK, Schousboe A, Iversen P, Sørensen M, Keiding S, Vilstrup H, Gjedde A, Ott P, Waagepetersen HS (2007) The metabolic role of isoleucine in detoxification of ammonia in cultured mouse neurons and astrocytes. Neurochem Int 50:1042–1051PubMedCrossRefGoogle Scholar
  43. 43.
    Nicholls D, Attwell D (1990) The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11:462–468PubMedCrossRefGoogle Scholar
  44. 44.
    Rossi DJD, Oshima TT, Attwell DD (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321PubMedCrossRefGoogle Scholar
  45. 45.
    Vorwerk CK, Naskar R, Schuettauf F, Quinto K, Zurakowski D, Gochenauer G, Robinson MB, Mackler SA, Dreyer EB (2000) Depression of retinal glutamate transporter function leads to elevated intravitreal glutamate levels and ganglion cell death. Invest Ophthalmol Vis Sci 41:3615–3621PubMedGoogle Scholar
  46. 46.
    Naskar RR, Vorwerk CKC, Dreyer EBE (2000) Concurrent downregulation of a glutamate transporter and receptor in glaucoma. Invest Ophthalmol Vis Sci 41:1940–1944PubMedGoogle Scholar
  47. 47.
    Horie T, Ono K, Nagao K, Nishi H, Kinoshita M, Kawamura T, Wada H, Shimatsu A, Kita T, Hasegawa K (2008) Oxidative stress induces GLUT4 translocation by activation of PI3-K/Akt and dual AMPK kinase in cardiac myocytes. J Cell Physiol 215:733–742PubMedCrossRefGoogle Scholar
  48. 48.
    Duan S, Anderson CM, Stein BA, Swanson RA (1999) Glutamate induces rapid upregulation of astrocyte glutamate transport and cell-surface expression of GLAST. J Neurosci 19:10193–10200PubMedGoogle Scholar
  49. 49.
    Gegelashvili M, Rodriguez-Kern A, Sung L, Shimamoto K, Gegelashvili G (2007) Glutamate transporter GLAST/EAAT1 directs cell surface expression of FXYD2/gamma subunit of Na, K-ATPase in human fetal astrocytes. Neurochem Int 50:916–920PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Anne Katrine Toft-Kehler
    • 1
  • Dorte Marie Skytt
    • 1
  • Kristian Arild Poulsen
    • 1
  • Charlotte Taul Brændstrup
    • 1
  • Georgi Gegelashvili
    • 2
    • 3
  • Helle Waagepetersen
    • 2
  • Miriam Kolko
    • 1
    • 4
    • 5
    • 6
  1. 1.Department of Neuroscience and Pharmacology, the Panum InstituteUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of Drug Design and Pharmacology, Faculty of Health and Medical DesignUniversity of CopenhagenCopenhagenDenmark
  3. 3.Institute of Chemical BiologyIlia State UniversityTbilisiGeorgia
  4. 4.Department of International Health, Immunology and Microbiology, the Panum InstituteUniversity of CopenhagenCopenhagenDenmark
  5. 5.Department of OphthalmologyRoskilde University HospitalRoskildeDenmark
  6. 6.Department of Cellular and Molecular Medicine, Center of Healthy Aging, the Panum InstituteUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations