Neurochemical Research

, Volume 39, Issue 4, pp 700–706 | Cite as

The Involvement of CXCL11 in Bone Marrow-Derived Mesenchymal Stem Cell Migration Through Human Brain Microvascular Endothelial Cells

  • Yu Feng
  • Hong-Mei Yu
  • De-Shu Shang
  • Wen-Gang Fang
  • Zhi-Yi He
  • Yu-Hua Chen
Original Paper


Bone marrow-derived mesenchymal stem cells (MSCs) transplant into the brain, where they play a potential therapeutic role in neurological diseases. However, the blood–brain barrier (BBB) is a native obstacle for MSCs entry into the brain. Little is known about the mechanism behind MSCs migration across the BBB. In the present study, we modeled the interactions between human MSCs (hMSCs) and human brain microvascular endothelial cells (HBMECs) to mimic the BBB microenvironment. Real-time PCR analysis indicated that the chemokine CXCL11 is produced by hMSCs and the chemokine receptor CXCR3 is expressed on HBMECs. Further results indicate that CXCL11 secreted by hMSCs may interact with CXCR3 on HBMECs to induce the disassembly of tight junctions through the activation of ERK1/2 signaling in the endothelium, which promotes MSCs transendothelial migration. These findings are relevant for understanding the biological responses of MSCs in BBB environments and helpful for the application of MSCs in neurological diseases.


Bone marrow-derived mesenchymal stem cell Chemokine CXCL11 CXCR3 Brain microvascular endothelial cell Tight junction Blood–brain barrier 


  1. 1.
    Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, Ide C, Nabeshima Y (2005) Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309:314–317PubMedCrossRefGoogle Scholar
  2. 2.
    McFarlin K, Gao X, Liu YB, Dulchavsky DS, Kwon D, Arbab AS, Bansal M, Li Y, Chopp M, Dulchavsky SA, Gautam SC (2006) Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat. Wound Repair Regen 14:471–478PubMedCrossRefGoogle Scholar
  3. 3.
    Rüster B, Göttig S, Ludwig RJ, Bistrian R, Müller S, Seifried E, Gille J, Henschler R (2006) Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 108:3938–3944PubMedCrossRefGoogle Scholar
  4. 4.
    Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106:419–427PubMedCrossRefGoogle Scholar
  5. 5.
    Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, Ratajczak MZ, Janowska-Wieczorek A (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-Met axes and involves matrix metalloproteinases. Stem Cells 24:1254–1264PubMedCrossRefGoogle Scholar
  6. 6.
    Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE, Bae JS (2010) Intracerebral transplantation of bone marrowderived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses. Stem Cells 28:329–343PubMedGoogle Scholar
  7. 7.
    Danielyan L, Schäfer R, von Ameln-Mayerhofer A, Buadze M, Geisler J, Klopfer T, Burkhardt U, Proksch B, Verleysdonk S, Ayturan M, Buniatian GH, Gleiter CH, Frey WH 2nd (2009) Intranasal delivery of cells to the brain. Eur J Cell Biol 88:315–324PubMedCrossRefGoogle Scholar
  8. 8.
    Dharmasaroja P (2009) Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke. J Clin Neurosci 16:12–20PubMedCrossRefGoogle Scholar
  9. 9.
    Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2009) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25PubMedCrossRefGoogle Scholar
  10. 10.
    Liu WY, Wang ZB, Zhang LC, Wei X, Li L (2012) Tight junction in blood–brain barrier: an overview of structure, regulation, and regulator substances. CNS Neurosci Ther 18:609–615PubMedCrossRefGoogle Scholar
  11. 11.
    Zhou SB, Wang J, Chiang CA, Sheng LL, Li QF (2013) Mechanical stretch upregulates Sdf-1α in skin tissue and induces migration of circulating bone marrow-derived stem cells into the expanded skin. Stem Cells. doi: 10.1002/stem.1479 Google Scholar
  12. 12.
    Augello A, Kurth TB, De Bari C (2010) Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. Eur Cell Mate 20:121–133Google Scholar
  13. 13.
    Chamberlain G, Smith H, Rainger GE, Middleton J (2011) Mesenchymal stem cells exhibit firm adhesion, crawling, spreading and transmigration across aortic endothelial cells: effects of chemokines and shear. PLoS ONE 6:e25663PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Carrero R, Cerrada I, Lledó E, Dopazo J, García-García F, Rubio MP, Trigueros C, Dorronsoro A, Ruiz-Sauri A, Montero JA, Sepúlveda P (2012) IL1β induces mesenchymal stem cells migration and leucocyte chemotaxis through NF-κB. Stem Cell Rev 8:905–916PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Trotta T, Costantini S, Colonna G (2009) Modelling of the membrane receptor CXCR3 and its complexes with CXCL9, CXCL10 and CXCL11 chemokines: putative target for new drug design. Mol Immunol 47:332–339PubMedCrossRefGoogle Scholar
  16. 16.
    Sung HJ, Hong SC, Yoo JH, Oh JH, Shin HJ, Choi IY, Ahn KH, Kim SH, Park Y, Kim BS (2010) Stemness evaluation of mesenchymal stem cells from placentas according to developmental stage: comparison to those from adult bone marrow. J Korean Med Sci 25:1418–1426PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Tropel P, Noël D, Platet N, Legrand P, Benabid AL, Berger F (2004) Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res 295:395–406PubMedCrossRefGoogle Scholar
  18. 18.
    Lin MN, Shang DS, Sun W, Li B, Xu X, Fang WG, Zhao WD, Cao L, Chen YH (2013) Involvement of PI3K and ROCK signaling pathways in migration of bone marrow-derived mesenchymal stem cells through human brain microvascular endothelial cell monolayers. Brain Res 1513:1–8PubMedCrossRefGoogle Scholar
  19. 19.
    Greco SJ, Rameshwar P (2008) Microenvironmental considerations in the application of human mesenchymal stem cells in regenerative therapies. Biologics 2:699–705PubMedCentralPubMedGoogle Scholar
  20. 20.
    Wolf MJ, Hoos A, Bauer J, Boettcher S, Knust M, Weber A, Simonavicius N, Schneider C, Lang M, Stürzl M, Croner RS, Konrad A, Manz MG, Moch H, Aguzzi A, van Loo G, Pasparakis M, Prinz M, Borsig L, Heikenwalder M (2012) Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell 22:91–105PubMedCrossRefGoogle Scholar
  21. 21.
    Man SM, Ma YR, Shang DS, Zhao WD, Li B, Guo DW, Fang WG, Zhu L, Chen YH (2007) Peripheral T cells overexpress MIP-1 α to enhance its transendothelial migration in Alzheimer’s disease. Neurobiol Aging 28:485–496PubMedCrossRefGoogle Scholar
  22. 22.
    Lazzeri E, Romagnani P (2005) CXCR3-binding chemokines: novel multifunctional therapeutic targets. Curr Drug Targets Immune Endocr Metabol Disord 5:109–118PubMedCrossRefGoogle Scholar
  23. 23.
    Zeremski M, Petrovic LM, Talal AH (2007) The role of chemokines as inflammatory mediators in chronic hepatitis C virus infection. J Viral Hepat 14:675–687PubMedGoogle Scholar
  24. 24.
    Groom JR, Luster AD (2011) CXCR3 in T cell function. Exp Cell Res 317:620–631PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Groom JR, Luster AD (2011) CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 89:207–215PubMedCrossRefGoogle Scholar
  26. 26.
    Müller M, Carter S, Hofer MJ, Campbell IL (2010) Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity—a tale of conflict and conundrum. Neuropathol Appl Neurobiol 36:368–387PubMedCrossRefGoogle Scholar
  27. 27.
    Loetscher P, Clark-Lewis I (2001) Agonistic and antagonistic activities of chemokines. J Leukoc Biol 69:881–884PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yu Feng
    • 1
    • 2
  • Hong-Mei Yu
    • 1
  • De-Shu Shang
    • 2
  • Wen-Gang Fang
    • 2
  • Zhi-Yi He
    • 1
  • Yu-Hua Chen
    • 2
  1. 1.Department of NeurologyThe First Hospital of China Medical UniversityShenyangChina
  2. 2.Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of EducationChina Medical UniversityShenyangChina

Personalised recommendations