Advertisement

Neurochemical Research

, Volume 39, Issue 1, pp 202–207 | Cite as

l-Tyrosine Induces DNA Damage in Brain and Blood of Rats

  • Samira D. T. De Prá
  • Gabriela K. Ferreira
  • Milena Carvalho-Silva
  • Júlia S. Vieira
  • Giselli Scaini
  • Daniela D. Leffa
  • Gabriela E. Fagundes
  • Bruno N. Bristot
  • Gabriela D. Borges
  • Gustavo C. Ferreira
  • Patrícia F. Schuck
  • Vanessa M. Andrade
  • Emilio L. Streck
Original Paper

Abstract

Mutations in the tyrosine aminotransferase gene have been identified to cause tyrosinemia type II which is inherited in an autosomal recessive manner. Studies have demonstrated that an excessive production of ROS can lead to reactions with macromolecules, such as DNA, lipids, and proteins. Considering that the l-tyrosine may promote oxidative stress, the main objective of this study was to investigate the in vivo effects of l-tyrosine on DNA damage determined by the alkaline comet assay, in brain and blood of rats. In our acute protocol, Wistar rats (30 days old) were killed 1 h after a single intraperitoneal l-tyrosine injection (500 mg/kg) or saline. For chronic administration, the animals received two subcutaneous injections of l-tyrosine (500 mg/kg, 12-h intervals) or saline administered for 24 days starting at postnatal day (PD) 7 (last injection at PD 31), 12 h after the last injection, the animals were killed by decapitation. We observed that acute administration of l-tyrosine increased DNA damage frequency and damage index in cerebral cortex and blood when compared to control group. Moreover, we observed that chronic administration of l-tyrosine increased DNA damage frequency and damage index in hippocampus, striatum, cerebral cortex and blood when compared to control group. In conclusion, the present work demonstrated that DNA damage can be encountered in brain from animal models of hypertyrosinemia, DNA alterations may represent a further means to explain neurological dysfunction in this inherited metabolic disorder and to reinforce the role of oxidative stress in the pathophysiology of tyrosinemia type II.

Keywords

Tyrosinemia type II DNA damage Comet assay Oxidative stress 

Notes

Acknowledgments

This research was supported by Grants from Programa de Pós-graduação em Ciências da Saúde—Universidade do Extremo Sul Catarinense (UNESC) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

References

  1. 1.
    Buist NRM, Kennaway NG, Fellmann JH (1985). In: Bickel H, Wachtel U (eds) Inherited diseases of amino acid metabolism. Thieme, Stuttgart, pp 203–235Google Scholar
  2. 2.
    Goldsmith LA, Kang V, Bienfang DC, Jimbow K, Gerald P, Baden HP (1973) Tyrosinemia with plantar and palmar keratosis and keratitis. J Pediatr 83:798–805PubMedCrossRefGoogle Scholar
  3. 3.
    Mitchell GA, Grompe M, Lambert M, Tanguay RM (2001) Hypertyrosinemia. In: Scriver CR, Beaudet AL, Sly WS, Valle Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1977–1982Google Scholar
  4. 4.
    Fois A, Borgogni P, Cioni M, Molinelli M, Frezzotti R, Bardelli AM, Lasorella G, Barberi L, Durand P, DoRocco M, Romano C, Parini R, Cirbetta C, Giovanninim G, Riva E, Balato N, Sartorio R, Mollica F, Zammarchi E, Battini ML (1986) Presentation of the data of the Italian registry for oculocutaneous tyrosinemia. J Inherit Metab Dis 9:S262–S263CrossRefGoogle Scholar
  5. 5.
    Charfeddine C, Monastiri K, Mokni M, Laadjimi A, Kaabachi N, Perin O, Nilges M, Kassar S, Keirallah M, Guediche MN, Kamoun MR, Tebib N, Ben Dridi MF, Boubaker S, Ben Osman A, Abdelhak S (2006) Clinical and mutational investigations of tyrosinemia type II in northern Tunisia: identification and structural characterization of two novel TAT mutations. Mol Genet Metab 88:184–191PubMedCrossRefGoogle Scholar
  6. 6.
    Huhn R, Stoermer H, Klingele B, Bausch E, Fois A, Farnetani M, Di Rocco M, Boue J, Kirk JM, Coleman R, Scherer G (1998) Novel and recurrent tyrosine aminotransferase gene mutations in tyrosinemia type II. Hum Genet 102:305–313PubMedCrossRefGoogle Scholar
  7. 7.
    Meissner T, Betz RC, Pasternack SM, Eigelshoven S, Ruzicka T, Kruse R, Laitenberger G, Mayatepek E (2008) Richnere Hanhart syndrome detected by expanded newborn screening. Pediatr Dermatol 25:378–380PubMedCrossRefGoogle Scholar
  8. 8.
    Natt E, Kao FT, Rettenmeier R, Scherer G (1986) Assignment of the human tyrosine aminotransferase gene to chromosome 16. Hum Genet 72:225–228PubMedCrossRefGoogle Scholar
  9. 9.
    Greengard O, Andersson SM, Raiha NCR, Ohisalo JJ (1970) In biochemical actions of hormones. J Dev Physiol 2:17–27Google Scholar
  10. 10.
    Chakrapani A, Holme E (2006) Disorders of tyrosine metabolism. In: Fernandes J, Saudubray JM, Van den Berghe G, Walter JM (eds) Inborn metabolic diseases: diagnosis and treatment, 4th edn. Springer, Würzburg, pp 233–243CrossRefGoogle Scholar
  11. 11.
    Maydan G, Andresen BS, Madsen PP, Zeigler M, Raas-Rothschild A, Zlotogorski A, Gutman A, Korman SH (2006) TAT gene mutation analysis in three Palestinian kindreds with oculocutaneous tyrosinaemia type II; characterization of a silent exonic transversion that causes complete missplicing by exon 11 skipping. J Inherit Metab Dis 29:620–626PubMedCrossRefGoogle Scholar
  12. 12.
    Liu Z, Martin LJ (2001) Motor neurons rapidly accumulate DNA single-strand breaks after in vitro exposure to nitric oxide and peroxynitrite and in vivo axotomy. J Comp Neurol 432:35–60PubMedCrossRefGoogle Scholar
  13. 13.
    Martin LJ, Liu Z (2002) DNA damage profiling in motor neurons: a single-cell analysis by comet assay. Neurochem Res 27:1093–1104PubMedCrossRefGoogle Scholar
  14. 14.
    Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayaski H, Miyamol Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and an in vivo genetic toxicological testing. Environ Mol Mutagen 35:206–221PubMedCrossRefGoogle Scholar
  15. 15.
    Sgaravatti AM, Vargas BA, Zandoná BR, Deckmann KB, Rockenback FJ, Moraes TB, Monserrat JM, Sgarbi MB, Pederzolli CD, Wyse ATS, Wannmacher CMD, Wajner M, Dutra-Filho CS (2008) Tyrosine promotes oxidative stress in cerebral cortex of young rats. Int J Dev Neurosci 26:553–559CrossRefGoogle Scholar
  16. 16.
    Sgaravatti AM, Magnusson AS, de Oliveira AS, Rosa AP, Mescka CP, Zanin FR, Pederzolli CD, Wyse AT, Wannmacher CM, Wajner M, Dutra-Filho CS (2009) Tyrosine administration decreases glutathione and stimulates lipid and protein oxidation in rat cerebral cortex. Metab Brain Dis 24:415–425PubMedCrossRefGoogle Scholar
  17. 17.
    Macêdo LG, Carvalho-Silva M, Ferreira GK, Vieira JS, Olegário N, Gonçalves RC, Vuolo FS, Ferreira GC, Schuck PF, Dal-Pizzol F, Streck EL (2013) Effect of acute administration of l-tyrosine on oxidative stress parameters in brain of young rats. Neurochem Res 38:2625–2630PubMedCrossRefGoogle Scholar
  18. 18.
    Morre MC, Hefti F, Wurtman RJ (1980) Regional tyrosine levels in rat brain after tyrosine administration. J Neural Transm 49:45–50PubMedCrossRefGoogle Scholar
  19. 19.
    Bongiovanni R, Yamamoto BK, Simpson C, Jaskiw GE (1980) Pharmacokinetics of systemically administered tyrosine: a comparison of serum, brain tissue and in vivo microdialysate levels in the rat. J Neurochem 87(1980):310–317Google Scholar
  20. 20.
    Singh N, McCoy M, Tice R, Schneider E (1988) A simple technique for quantification of low levels of DNA damage in individuals cells. Exp Cell Res 175:184–191PubMedCrossRefGoogle Scholar
  21. 21.
    Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261PubMedCrossRefGoogle Scholar
  22. 22.
    Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715PubMedCrossRefGoogle Scholar
  23. 23.
    Rao KS (1993) Genomic damage and its repair in young and aging brain. Mol Neurobiol 7:23–48PubMedCrossRefGoogle Scholar
  24. 24.
    Halliwell B, Gutteridge JMC (2001) Oxidative stress: adaptation, damage, repair and death. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press, Oxford, pp 246–350Google Scholar
  25. 25.
    Cooke MS, Olinski R, Evans MD (2006) Does measurement of oxidative damage to DNA have clinical significance? Clin Chim Acta 365:30–49PubMedCrossRefGoogle Scholar
  26. 26.
    Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantization of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191PubMedCrossRefGoogle Scholar
  27. 27.
    Speit G, Hartmann A (1995) The contribution of excision repair to the DNA effects seen in the alkaline single cell gel test (comet assay). Mutagenesis 10:555–559PubMedCrossRefGoogle Scholar
  28. 28.
    Salguero G, Akin E, Templin C, Kotlarz D, Doerries C, Landmesser U, Grote K, Schieffer B (2008) Renovascular hypertension by two-kidney one-clip enhances endothelial progenitor cell mobilization in a p47phox-dependent manner. J Hypertens 26:257–268PubMedCrossRefGoogle Scholar
  29. 29.
    Sachse A, Wolf G (2007) Angiotensin II-induced reactive oxygen species and the kidney. J Am Soc Nephrol 18:2439–2446PubMedCrossRefGoogle Scholar
  30. 30.
    Wolf G (2005) Role of reactive oxygen species in angiotensin II mediated renal growth, differentiation, and apoptosis. Antioxid Redox Signal 7:1337–1345PubMedCrossRefGoogle Scholar
  31. 31.
    Gill PS, Wilcox CS (2006) NADPH oxidases in the kidney. Antioxid Redox Signal 8:1597–1607PubMedCrossRefGoogle Scholar
  32. 32.
    Touyz RM (2004) Reactive oxygen species and angiotensin II signaling in vascular cells: implications in cardiovascular disease. Braz J Med Biol Res 37:1263–1273PubMedCrossRefGoogle Scholar
  33. 33.
    Zhong N, Xu J (2008) Synergistic activation of the human MnSOD promoter by DJ-1 and PGC-1α: regulation by SUMOylation and oxidation. Hum Mol Genet 17:3357–3367PubMedCrossRefGoogle Scholar
  34. 34.
    Madsen-Bouterse SA, Zhong Q, Mohammad G, Ho YS, Kowluru RA (2010) Oxidative damage of mitochondrial DNA in diabetes and its protection by manganese superoxide dismutase. Free Radic Res 44:313–321PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Schmid U, Stopper H, Schweda F, Queisser N, Schupp N (2008) Angiotensin II induces DNA damage in the kidney. Cancer Res 68:9239–9246PubMedCrossRefGoogle Scholar
  36. 36.
    Martin LJ, Pan Y, Price AC, Sterling W, Compeland NG, Jenkins NA, Price DL, Lee MK (2006) Parkinson’s disease α-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 26:41–50PubMedCrossRefGoogle Scholar
  37. 37.
    Martin LJ, Liu Z, Chen K, Price AC, Pan Y, Swaby JA, Golden WC (2007) Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanisms of mitochondriopathy and cell death. J Comp Neurol 500:20–46PubMedCrossRefGoogle Scholar
  38. 38.
    Ferreira GK, Scaini G, Carvalho-Silva M, Gomes LM, Borges LS, Vieira JS, Constantino LS, Ferreira GC, Schuck PF, Streck EL (2013) Effect of l-tyrosine in vitro and in vivo on energy metabolism parameters in brain and liver of young rats. Neurotox Res 23:327–335PubMedCrossRefGoogle Scholar
  39. 39.
    Gruno M, Peet N, Tein A, Salupere R, Sirotkina M, Valle J, Peetsalu A, Seppet EK (2008) Atrophic gastritis: deficient complex I of the respiratory chain in the mitochondria of corpus mucosal cells. J Gastroenterol 43:780–788PubMedCrossRefGoogle Scholar
  40. 40.
    Adam-Vizi V (2005) Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 7:1140–1149PubMedCrossRefGoogle Scholar
  41. 41.
    Stoerner JW, Butler IJ, Morriss FH Jr, Howell RR Jr, Seifert WE Jr, Caprioli RM, Adcock EW, Denson SE (1980) CSF neurotransmitter studies: an infant with ascorbic acid-responsive tyrosinemia. Am J Dis Child 134:492–494PubMedCrossRefGoogle Scholar
  42. 42.
    Jana S, Sinha M, Chanda D, Roy T, Banerjee K, Munshi S, Patro BS, Chakrabarti S (2011) Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: implications in dopamine cytotoxicity and pathogenesis of Parkinson’s disease. Biochim Biophys Acta 1812:663–673PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Samira D. T. De Prá
    • 1
    • 2
    • 3
  • Gabriela K. Ferreira
    • 1
    • 2
    • 3
  • Milena Carvalho-Silva
    • 1
    • 2
    • 3
  • Júlia S. Vieira
    • 1
    • 2
    • 3
  • Giselli Scaini
    • 1
    • 2
    • 3
  • Daniela D. Leffa
    • 5
  • Gabriela E. Fagundes
    • 5
  • Bruno N. Bristot
    • 5
  • Gabriela D. Borges
    • 5
  • Gustavo C. Ferreira
    • 4
  • Patrícia F. Schuck
    • 4
  • Vanessa M. Andrade
    • 5
  • Emilio L. Streck
    • 1
    • 2
    • 3
  1. 1.Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaBrazil
  2. 2.Instituto Nacional de Ciência e Tecnologia Translacional em MedicinaUniversidade do Extremo Sul CatarinenseCriciúmaBrazil
  3. 3.Center of Excellence in in Applied Neuroscience of Santa Catarina (NENASC)Universidade do Extremo Sul CatarinenseCriciúmaBrazil
  4. 4.Laboratório de Erros Inatos do Metabolismo, Programa de Pós-graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaBrazil
  5. 5.Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaBrazil

Personalised recommendations