Skip to main content
Log in

Electrical Stimulation Induces Calcium-Dependent Neurite Outgrowth and Immediate Early Genes Expressions of Dorsal Root Ganglion Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It has been reported that electrical stimulation (ES) can promote nerve regeneration. One of the key factors leading to the promotion is calcium, which plays a vital role in the regulation on electrical activity of neurons, but the detailed mechanism is still an open question. In this study, ES was used to stimulate cultured dorsal root ganglion neurons (DRGNs) and we’ve found that ES could greatly promote neurite outgrowth, and calcium signaling was involved in the ES-induced neurite extension in our research. Detailed pharmacological tests indicated that ES-induced elevation of intracellular free calcium concentration ([Ca2+] i ) in DRGNs was realized predominately via calcium influx and calcium mobilization, both of which contributed to enhancing neurite outgrowth promoted by ES. Additionally, a calcium-triggered c-fos and brain-derived neurotrophic factor (BDNF) transcription and/or translation were discovered during the ES-induced neurite outgrowth of cultured DRGNs. To our knowledge, this is the first case of detailed snapshots of studying calcium-dependent neurite outgrowth and BDNF and c-fos expressions in DRGNs induced by ES, which may provide experimental evidence for applying ES to promote regeneration of injured nerves and to enhance synthesis of c-fos and BDNF in neurons, and may also help explore the complex molecular cascades underlying the progressive pathophysiological changes in the ES-induced nerve regeneration in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gu X, Ding F, Yang Y, Liu J (2011) Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 93:204–230

    Article  CAS  PubMed  Google Scholar 

  2. Huang J, Ye Z, Hu X, Lu L, Luo Z (2010) Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells. Glia 58:622–631

    PubMed  Google Scholar 

  3. Gordon T, Sulaiman OA, Ladak A (2009) Chapter 24: electrical stimulation for improving nerve regeneration: where do we stand? Int Rev Neurobiol 87:433–444

    Google Scholar 

  4. Asensio-Pinilla E, Udina E, Jaramillo J, Navarro X (2009) Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury. Exp Neurol 219:258–265

    Article  PubMed  Google Scholar 

  5. Wan LD, Xia R, Ding WL (2010) Electrical stimulation enhanced remyelination of injured sciatic nerves by increasing neurotrophins. Neuroscience 169:1029–1038

    Article  CAS  PubMed  Google Scholar 

  6. Wang WJ, Zhu H, Li F, Wan LD, Li HC et al (2009) Electrical stimulation promotes motor nerve regeneration selectivity regardless of end-organ connection. J Neurotrauma 26:641–649

    Article  PubMed  Google Scholar 

  7. Brushart TM, Jari R, Verge V, Rohde C, Gordon T (2005) Electrical stimulation restores the specificity of sensory axon regeneration. Exp Neurol 194:221–229

    Article  PubMed  Google Scholar 

  8. Franz CK, Rutishauser U, Rafuse VF (2008) Intrinsic neuronal properties control selective targeting of regenerating motoneurons. Brain 131:1492–1505

    Article  PubMed  Google Scholar 

  9. Vivo M, Puigdemasa A, Casals L, Asensio E, Udina E et al (2008) Immediate electrical stimulation enhances regeneration and reinnervation and modulates spinal plastic changes after sciatic nerve injury and repair. Exp Neurol 211:180–193

    Article  PubMed  Google Scholar 

  10. Al-Majed AA, Brushart TM, Gordon T (2000) Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci 12:4381–4390

    CAS  PubMed  Google Scholar 

  11. Eberhardt KA, Irintchev A, Al-Majed AA, Simova O, Brushart TM et al (2006) BDNF/TrkB signaling regulates HNK-1 carbohydrate expression in regenerating motor nerves and promotes functional recovery after peripheral nerve repair. Exp Neurol 198:500–510

    Article  CAS  PubMed  Google Scholar 

  12. Al-Majed AA, Tam SL, Gordon T (2004) Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral motoneurons. Cell Mol Neurobiol 24:379–402

    Article  CAS  PubMed  Google Scholar 

  13. Geremia NM, Gordon T, Brushart TM, Al-Majed AA, Verge VM (2007) Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp Neurol 205:347–359

    Article  CAS  PubMed  Google Scholar 

  14. English AW, Schwartz G, Meador W, Sabatier MJ, Mulligan A (2007) Electrical stimulation promotes peripheral axon regeneration by enhanced neuronal neurotrophin signaling. Dev Neurobiol 67:158–172

    Article  CAS  PubMed  Google Scholar 

  15. Gordon T, Brushart TM, Chan KM (2008) Augmenting nerve regeneration with electrical stimulation. Neurol Res 30:1012–1022

    Article  CAS  PubMed  Google Scholar 

  16. Chang YJ, Hsu CM, Lin CH, Lu MS, Chen L (2013) Electrical stimulation promotes nerve growth factor-induced neurite outgrowth and signaling. Biochim Biophys Acta 1830:4130–4136

    Article  CAS  PubMed  Google Scholar 

  17. Wan L, Xia R, Ding W (2010) Short-term low-frequency electrical stimulation enhanced remyelination of injured peripheral nerves by inducing the promyelination effect of brain-derived neurotrophic factor on Schwann cell polarization. J Neurosci Res 88:2578–2587

    CAS  PubMed  Google Scholar 

  18. Wenjin W, Wenchao L, Hao Z, Feng L, Yan W et al (2011) Electrical stimulation promotes BDNF expression in spinal cord neurons through Ca(2+)- and Erk-dependent signaling pathways. Cell Mol Neurobiol 31:459–467

    Article  PubMed  Google Scholar 

  19. Quessy S, Freedman EG (2004) Electrical stimulation of rhesus monkey nucleus reticularis gigantocellularis. I. Characteristics of evoked head movements. Exp Brain Res 156:342–356

    Article  PubMed  Google Scholar 

  20. Barat E, Boisseau S, Bouyssieres C, Appaix F, Savasta M et al (2012) Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes. PLoS ONE 7:e41793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Juretic N, Jorquera G, Caviedes P, Jaimovich E, Riveros N (2012) Electrical stimulation induces calcium-dependent up-regulation of neuregulin-1beta in dystrophic skeletal muscle cell lines. Cell Physiol Biochem 29:919–930

    Article  CAS  PubMed  Google Scholar 

  22. Ozkan MH, Ozturk EI, Uma S (2013) Electrical field stimulation (EFS)-induced relaxations turn into contractions upon removal of extracellular calcium in rat mesenteric artery. Pharmacol Res 70:60–65

    Article  CAS  PubMed  Google Scholar 

  23. Lichvarova L, Jaskova K, Lacinova L (2012) NGF-induced neurite outgrowth in PC12 cells is independent of calcium entry through L-type calcium channels. Gen Physiol Biophys 31:473–478

    Article  CAS  PubMed  Google Scholar 

  24. Takeshita M, Banno Y, Nakamura M, Otsuka M, Teramachi H et al (2012) The pivotal role of intracellular calcium in oxaliplatin-induced inhibition of neurite outgrowth but not cell death in differentiated PC12 cells. Chem Res Toxicol 24:1845–1852

    Article  Google Scholar 

  25. Zhaleh H, Azadbakht M, Pour AB (2011) Effects of extracellular calcium concentration on neurite outgrowth in PC12 cells by staurosporine. Neurosci Lett 498:1–5

    Article  CAS  PubMed  Google Scholar 

  26. Liu W, Ren Y, Bossert A, Wang X, Dayawansa S et al (2012) Allotransplanted neurons used to repair peripheral nerve injury do not elicit overt immunogenicity. PLoS ONE 7:e31675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Roehm PC, Xu N, Woodson EA, Green SH, Hansen MR (2008) Membrane depolarization inhibits spiral ganglion neurite growth via activation of multiple types of voltage sensitive calcium channels and calpain. Mol Cell Neurosci 37:376–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ulmann L, Rodeau JL, Danoux L, Contet-Audonneau JL, Pauly G et al (2009) Dehydroepiandrosterone and neurotrophins favor axonal growth in a sensory neuron-keratinocyte coculture model. Neuroscience 159:514–525

    Article  CAS  PubMed  Google Scholar 

  29. Personius KE, Karnes JL, Parker SD (2008) NMDA receptor blockade maintains correlated motor neuron firing and delays synapse competition at developing neuromuscular junctions. J Neurosci 28:8983–8992

    Article  CAS  PubMed  Google Scholar 

  30. Samways DS, Harkins AB, Egan TM (2009) Native and recombinant ASIC1a receptors conduct negligible Ca2+ entry. Cell Calcium 45:319–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zhou S, Yang Y, Gu X, Ding F (2008) Chitooligosaccharides protect cultured hippocampal neurons against glutamate-induced neurotoxicity. Neurosci Lett 444:270–274

    Article  CAS  PubMed  Google Scholar 

  32. Peirson SN, Butler JN, Foster RG (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31:e73

    Article  PubMed Central  PubMed  Google Scholar 

  33. Schmidt CE, Shastri VR, Vacanti JP, Langer R (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci USA 94:8948–8953

    Article  CAS  PubMed  Google Scholar 

  34. Balkowiec A, Katz DM (2002) Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons. J Neurosci 22:10399–10407

    CAS  PubMed  Google Scholar 

  35. Uhlen P, Fritz N (2010) Biochemistry of calcium oscillations. Biochem Biophys Res Commun 396:28–32

    Article  CAS  PubMed  Google Scholar 

  36. Zhao R, Liu L, Rittenhouse AR (2007) Ca2+ influx through both L- and N-type Ca2+ channels increases c-fos expression by electrical stimulation of sympathetic neurons. Eur J Neurosci 25:1127–1135

    Article  PubMed  Google Scholar 

  37. Fiumelli H, Riederer IM, Martin JL, Riederer BM (2008) Phosphorylation of neurofilament subunit NF-M is regulated by activation of NMDA receptors and modulates cytoskeleton stability and neuronal shape. Cell Motil Cytoskelet 65:495–504

    Article  CAS  Google Scholar 

  38. Cheng LZ, Lu N, Zhang YQ, Zhao ZQ (2010) Ryanodine receptors contribute to the induction of nociceptive input-evoked long-term potentiation in the rat spinal cord slice. Mol Pain 6:1

    Article  PubMed Central  PubMed  Google Scholar 

  39. Lee ES, Ryu JH, Kim EJ, Kim GT, Cho YW et al (2013) Lamotrigine increases intracellular Ca(2+) levels and Ca(2+)/calmodulin-dependent kinase II activation in mouse dorsal root ganglion neurones. Acta Physiol (Oxf) 207:397–404

    Article  CAS  Google Scholar 

  40. Desfrere L, Karlsson M, Hiyoshi H, Malmersjo S, Nanou E et al (2009) Na, K-ATPase signal transduction triggers CREB activation and dendritic growth. Proc Natl Acad Sci USA 106:2212–2217

    Article  CAS  PubMed  Google Scholar 

  41. Dong M, Wu Y, Fan Y, Xu M, Zhang J (2006) c-fos modulates brain-derived neurotrophic factor mRNA expression in mouse hippocampal CA3 and dentate gyrus neurons. Neurosci Lett 400:177–180

    Article  CAS  PubMed  Google Scholar 

  42. Bonner JF, Connors TM, Silverman WF, Kowalski DP, Lemay MA et al (2011) Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J Neurosci 31:4675–4686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Trang T, Beggs S, Wan X, Salter MW (2009) P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci 29:3518–3528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Fields RD, Neale EA, Nelson PG (1990) Effects of patterned electrical activity on neurite outgrowth from mouse sensory neurons. J Neurosci 10:2950–2964

    CAS  PubMed  Google Scholar 

  45. Fields RD, Eshete F, Stevens B, Itoh K (1997) Action potential-dependent regulation of gene expression: temporal specificity in Ca2+, cAMP-responsive element binding proteins, and mitogen-activated protein kinase signaling. J Neurosci 17:7252–7266

    CAS  PubMed  Google Scholar 

  46. Ou YT, Lu MS, Chiao CC (2012) The effects of electrical stimulation on neurite outgrowth of goldfish retinal explants. Brain Res 1480:22–29

    Article  CAS  PubMed  Google Scholar 

  47. Yeh CC, Lin YC, Tsai FJ, Huang CY, Yao CH et al (2010) Timing of applying electrical stimulation is an important factor deciding the success rate and maturity of regenerating rat sciatic nerves. Neurorehabil Neural Repair 24:730–735

    Article  PubMed  Google Scholar 

  48. Ghosh A, Greenberg ME (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268:239–247

    Article  CAS  PubMed  Google Scholar 

  49. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

    Article  CAS  PubMed  Google Scholar 

  50. Arie Y, Iketani M, Takamatsu K, Mikoshiba K, Goshima Y et al (2009) Developmental changes in the regulation of calcium-dependent neurite outgrowth. Biochem Biophys Res Commun 379:11–15

    Article  CAS  PubMed  Google Scholar 

  51. Fields RD, Lee PR, Cohen JE (2005) Temporal integration of intracellular Ca2+ signaling networks in regulating gene expression by action potentials. Cell Calcium 37:433–442

    Article  CAS  PubMed  Google Scholar 

  52. Cohan CS, Connor JA, Kater SB (1987) Electrically and chemically mediated increases in intracellular calcium in neuronal growth cones. J Neurosci 7:3588–3599

    CAS  PubMed  Google Scholar 

  53. Yao LJ, Wang G, Ou-Yang KF, Wei CL, Wang XH et al (2006) Ca2+ sparks and Ca2+ glows in superior cervical ganglion neurons. Acta Pharmacol Sin 27:848–852

    Article  CAS  PubMed  Google Scholar 

  54. Fields RD, Guthrie PB, Russell JT, Kater SB, Malhotra BS et al (1993) Accommodation of mouse DRG growth cones to electrically induced collapse: kinetic analysis of calcium transients and set-point theory. J Neurobiol 24:1080–1098

    Article  CAS  PubMed  Google Scholar 

  55. Mattson MP, Barger SW, Begley JG, Mark RJ (1995) Calcium, free radicals, and excitotoxic neuronal death in primary cell culture. Methods Cell Biol 46:187–216

    Article  CAS  PubMed  Google Scholar 

  56. Lirk P, Poroli M, Rigaud M, Fuchs A, Fillip P et al (2008) Modulators of calcium influx regulate membrane excitability in rat dorsal root ganglion neurons. Anesth Analg 107:673–685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Jacques-Fricke BT, Seow Y, Gottlieb PA, Sachs F, Gomez TM (2006) Ca2+ influx through mechanosensitive channels inhibits neurite outgrowth in opposition to other influx pathways and release from intracellular stores. J Neurosci 26:5656–5664

    Article  CAS  PubMed  Google Scholar 

  58. Staaf S, Maxvall I, Lind U, Husmark J, Mattsson JP et al (2009) Down regulation of TRPC1 by shRNA reduces mechanosensitivity in mouse dorsal root ganglion neurons in vitro. Neurosci Lett 457:3–7

    Article  CAS  PubMed  Google Scholar 

  59. Zhaleh H, Azadbakht M, Bidmeshki Pour A (2012) Possible involvement of calcium channels and plasma membrane receptors on Staurosporine-induced neurite outgrowth. Bosn J Basic Med Sci 12:20–25

    CAS  PubMed  Google Scholar 

  60. Pietrobon M, Zamparo I, Maritan M, Franchi SA, Pozzan T et al (2011) Interplay among cGMP, cAMP, and Ca2+ in living olfactory sensory neurons in vitro and in vivo. J Neurosci 31:8395–8405

    Article  CAS  PubMed  Google Scholar 

  61. Georgiev D, Taniura H, Kambe Y, Takarada T, Yoneda Y (2008) A critical importance of polyamine site in NMDA receptors for neurite outgrowth and fasciculation at early stages of P19 neuronal differentiation. Exp Cell Res 314:2603–2617

    Article  CAS  PubMed  Google Scholar 

  62. Zeng Y, Lv XH, Zeng SQ, Tian SL, Li M et al (2008) Sustained depolarization-induced propagation of [Ca2+]i oscillations in cultured DRG neurons: the involvement of extracellular ATP and P2Y receptor activation. Brain Res 1239:12–23

    Article  CAS  PubMed  Google Scholar 

  63. Usachev YM, Thayer SA (1999) Ca2+ influx in resting rat sensory neurones that regulates and is regulated by ryanodine-sensitive Ca2+ stores. J Physiol 519(Pt 1):115–130

    Article  CAS  PubMed  Google Scholar 

  64. Zhang J, Zhang D, McQuade JS, Behbehani M, Tsien JZ et al (2002) c-fos regulates neuronal excitability and survival. Nat Genet 30:416–420

    Article  CAS  PubMed  Google Scholar 

  65. Cohen MS, Bas Orth C, Kim HJ, Jeon NL, Jaffrey SR (2011) Neurotrophin-mediated dendrite-to-nucleus signaling revealed by microfluidic compartmentalization of dendrites. Proc Natl Acad Sci USA 108:11246–11251

    Article  CAS  PubMed  Google Scholar 

  66. Orzel-Gryglewska J, Kusmierczak M, Majkutewicz I, Jurkowlaniec E (2012) Induction of hippocampal theta rhythm by electrical stimulation of the ventral tegmental area and its loss after septum inactivation. Brain Res 1436:51–67

    Article  CAS  PubMed  Google Scholar 

  67. Wu J, Hu Q, Huang D, Chen X, Chen J (2012) Effect of electrical stimulation of sciatic nerve on synaptic plasticity of spinal dorsal horn and spinal c-fos expression in neonatal, juvenile and adult rats. Brain Res 1448:11–19

    Article  CAS  PubMed  Google Scholar 

  68. Kocsis JD, Rand MN, Lankford KL, Waxman SG (1994) Intracellular calcium mobilization and neurite outgrowth in mammalian neurons. J Neurobiol 25:252–264

    Article  CAS  PubMed  Google Scholar 

  69. Patel AV, Krimm RF (2010) BDNF is required for the survival of differentiated geniculate ganglion neurons. Dev Biol 340:419–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20:709–726

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the National Natural Science Foundation of China (No. 30770571, 81101352 and 81201389) and Elite Talent Cultivation Programme of Tangdu hospital (No. 20125087). The authors thank Prof. Sanjue Hu and Siwei You (Institute of Neurobiology, Basic Unit) for their valuable technical advice. We appreciate technicians Lifeng Lan and Dan Geng for their great help during this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueyu Hu or Zhuojing Luo.

Additional information

Xiaodong Yan, Juanfang Liu, Jinghui Huang and Ming Huang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, X., Liu, J., Huang, J. et al. Electrical Stimulation Induces Calcium-Dependent Neurite Outgrowth and Immediate Early Genes Expressions of Dorsal Root Ganglion Neurons. Neurochem Res 39, 129–141 (2014). https://doi.org/10.1007/s11064-013-1197-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1197-7

Keywords

Navigation