Neurochemical Research

, Volume 38, Issue 12, pp 2490–2502 | Cite as

Nfasc155H and MAG are Specifically Susceptible to Detergent Extraction in the Absence of the Myelin Sphingolipid Sulfatide

  • A. D. Pomicter
  • J. M. DeLoyht
  • A. R. Hackett
  • N. Purdie
  • C. Sato-Bigbee
  • S. C. Henderson
  • J. L. Dupree
Original Paper


Mice incapable of synthesizing the myelin lipid sulfatide form paranodes that deteriorate with age. Similar instability also occurs in mice that lack contactin, contactin-associated protein or neurofascin155 (Nfasc155), the proteins that cluster in the paranode and form the junctional complex that mediates myelin-axon adhesion. In contrast to these proteins, sulfatide has not been shown to be enriched in the paranode nor has a sulfatide paranodal binding partner been identified; thus, it remains unclear how the absence of sulfatide results in compromised paranode integrity. Using an in situ extraction procedure, it has been reported that the absence of the myelin sphingolipids, galactocerebroside and sulfatide, increased the susceptibility of Nfasc155 to detergent extraction. Here, employing a similar approach, we demonstrate that in the presence of galactocerebroside but in the absence of sulfatide Nfasc155 is susceptible to detergent extraction. Furthermore, we use this in situ approach to show that stable association of myelin-associated glycoprotein (MAG) with the myelin membrane is sulfatide dependent while the membrane associations of myelin/oligodendrocyte glycoprotein, myelin basic protein and cyclic nucleotide phosphodiesterase are sulfatide independent. These findings indicate that myelin proteins maintain their membrane associations by different mechanisms. Moreover, the myelin proteins that cluster in the paranode and require sulfatide mediate myelin-axon adhesion. Additionally, the apparent dependency on sulfatide for maintaining Nfasc155 and MAG associations is intriguing since the fatty acid composition of sulfatide is altered and paranodal ultrastructure is compromised in multiple sclerosis. Thus, our findings present a potential link between sulfatide perturbation and myelin deterioration in multiple sclerosis.


Sulfatide Neurofascin Membrane rafts Myelin 



The authors wish to thank Drs. Manzoor Bhat, Peter Brophy, and Matt Rasband for their generous gifts of antibodies. This work was funded by a grant from the National Institute of Health-National Institute of Neurologic Disease and Stroke (R03 NS066186 (JLD)). All microscopy was performed at the VCU Department of Anatomy and Neurobiology Microscopy Facility, supported, in part, with funding from an National Institute of Health Center core grant (5P30NS047463).

Conflict of interest

The authors report no conflict of interests.


  1. 1.
    Hirano A, Dembitzer HM (1969) The transverse bands as a means of access to the periaxonal space of the central myelinated nerve fiber. J Ultrastruct Res 28(1):141–149PubMedCrossRefGoogle Scholar
  2. 2.
    Rosenbluth J (1987) Abnormal axoglial junctions in the myelin-deficient rat mutant. J Neurocytol 16(4):497–509PubMedCrossRefGoogle Scholar
  3. 3.
    Dupree JL, Coetzee T, Blight A, Suzuki K, Popko B (1998) Myelin galactolipids are essential for proper node of Ranvier formation in the CNS. J Neurosci 18(5):1642–1649PubMedGoogle Scholar
  4. 4.
    Charles P, Tait S, Faivre-Sarrailh C, Barbin G, Gunn-Moore F, Denisenko-Nehrbass N, Guennoc AM, Girault JA, Brophy PJ, Lubetzki C (2002) Neurofascin is a glial receptor for the paranodin/Caspr-contactin axonal complex at the axoglial junction. Curr Biol 12(3):217–220PubMedCrossRefGoogle Scholar
  5. 5.
    Gollan L, Salomon D, Salzer JL, Peles E (2003) Caspr regulates the processing of contactin and inhibits its binding to neurofascin. J Cell Biol 163(6):1213–1218PubMedCrossRefGoogle Scholar
  6. 6.
    Bonnon C, Bel C, Goutebroze L, Maigret B, Girault JA, Faivre-Sarrailh C (2007) PGY repeats and N-glycans govern the trafficking of paranodin and its selective association with contactin and neurofascin-155. Mol Biol Cell 18(1):229–241PubMedCrossRefGoogle Scholar
  7. 7.
    Thaxton C, Pillai AM, Pribisko AL, Labasque M, Dupree JL, Faivre-Sarrailh C, Bhat MA (2010) In vivo deletion of immunoglobulin domains 5 and 6 in neurofascin (Nfasc) reveals domain-specific requirements in myelinated axons. J Neurosci 30(14):4868–4876PubMedCrossRefGoogle Scholar
  8. 8.
    Bhat MA, Rios JC, Lu Y, Garcia-Fresco GP, Ching W, St Martin M, Li J, Einheber S, Chesler M, Rosenbluth J, Salzer JL, Bellen HJ (2001) Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron 30(2):369–383PubMedCrossRefGoogle Scholar
  9. 9.
    Boyle ME, Berglund EO, Murai KK, Weber L, Peles E, Ranscht B (2001) Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 30(2):385–397PubMedCrossRefGoogle Scholar
  10. 10.
    Sherman DL, Tait S, Melrose S, Johnson R, Zonta B, Court FA, Macklin WB, Meek S, Smith AJ, Cottrell DF, Brophy PJ (2005) Neurofascins are required to establish axonal domains for saltatory conduction. Neuron 48(5):737–742PubMedCrossRefGoogle Scholar
  11. 11.
    Pillai AM, Thaxton C, Pribisko AL, Cheng JG, Dupree JL, Bhat MA (2009) Spatiotemporal ablation of myelinating glia-specific neurofascin (Nfasc NF155) in mice reveals gradual loss of paranodal axoglial junctions and concomitant disorganization of axonal domains. J Neurosci Res 87(8):1773–1793PubMedCrossRefGoogle Scholar
  12. 12.
    Benjamins JA, Hadden T, Skoff RP (1982) Cerebroside sulfotransferase in Golgi-enriched fractions from rat brain. J Neurochem 38(1):233–241PubMedCrossRefGoogle Scholar
  13. 13.
    Honke K, Hirahara Y, Dupree J, Suzuki K, Popko B, Fukushima K, Fukushima J, Nagasawa T, Yoshida N, Wada Y, Taniguchi N (2002) Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc Natl Acad Sci U S A 99(7):4227–4232PubMedCrossRefGoogle Scholar
  14. 14.
    Ishibashi T, Dupree JL, Ikenaka K, Hirahara Y, Honke K, Peles E, Popko B, Suzuki K, Nishino H, Baba H (2002) A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J Neurosci 22(15):6507–6514PubMedGoogle Scholar
  15. 15.
    Marcus J, Honigbaum S, Shroff S, Honke K, Rosenbluth J, Dupree JL (2006) Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 53(4):372–381PubMedCrossRefGoogle Scholar
  16. 16.
    Pomicter AD, Shroff SM, Fuss B, Sato-Bigbee C, Brophy PJ, Rasband MN, Bhat MA, Dupree JL (2010) Novel forms of neurofascin 155 in the central nervous system: alterations in paranodal disruption models and multiple sclerosis. Brain 133(Pt 2):389–405PubMedCrossRefGoogle Scholar
  17. 17.
    Cestaro B, Marchesini S, Cervato G, Viani P, Vesely S (1984) Bilayer-micelle transition in phosphatidylcholine-sulfatide mixtures. Ital J Biochem 33(6):381–391PubMedGoogle Scholar
  18. 18.
    Taylor CM, Marta CB, Bansal R, Pfeiffer S (2003) The transport, assembly, and function of myelin lipids. In: Lazzarini R (ed) Myelin biology and disorders. Elsevier Academic Press, New York, pp 57–88Google Scholar
  19. 19.
    Oliveira RG, Maggio B (2002) Compositional domain immiscibility in whole myelin monolayers at the air-water interface and Langmuir-Blodgett films. Biochim Biophys Acta 1561(2):238–250PubMedCrossRefGoogle Scholar
  20. 20.
    Maggio B, Borioli GA, Del Boca M, De Tullio L, Fanani ML, Oliveira RG, Rosetti CM, Wilke N (2007) Composition-driven surface domain structuring mediated by sphingolipids and membrane-active proteins: above the nano- but under the micro-scale: mesoscopic biochemical/structural cross-talk in biomembranes. Cell Biochem Biophys 50(2):79–109PubMedCrossRefGoogle Scholar
  21. 21.
    Rosetti CM, Maggio B (2007) Protein-induced surface structuring in myelin membrane monolayers. Biophys J 93(12):4254–4267PubMedCrossRefGoogle Scholar
  22. 22.
    Rosetti CM, Maggio B, Oliveira RG (2008) The self-organization of lipids and proteins of myelin at the membrane interface. Molecular factors underlying the microheterogeneity of domain segregation. Biochim Biophys Acta 1778(7–8):1665–1675PubMedCrossRefGoogle Scholar
  23. 23.
    Schafer DP, Bansal R, Hedstrom KL, Pfeiffer SE, Rasband MN (2004) Does paranode formation and maintenance require partitioning of neurofascin 155 into lipid rafts? J Neurosci 24(13):3176–3185PubMedCrossRefGoogle Scholar
  24. 24.
    Dupree JL, Pomicter AD (2010) Myelin, DIGs, and membrane rafts in the central nervous system. Prostaglandins Other Lipid Mediat 91(3–4):118–129PubMedCrossRefGoogle Scholar
  25. 25.
    Schnaar RL, Collins BE, Wright LP, Kiso M, Tropak MB, Roder JC, Crocker PR (1998) Myelin-associated glycoprotein binding to gangliosides. Structural specificity and functional implications. Ann N Y Acad Sci 845:92–105PubMedCrossRefGoogle Scholar
  26. 26.
    Tait S, Gunn-Moore F, Collinson JM, Huang J, Lubetzki C, Pedraza L, Sherman DL, Colman DR, Brophy PJ (2000) An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axo-glial junction. J Cell Biol 150(3):657–666PubMedCrossRefGoogle Scholar
  27. 27.
    Trapp BD, Quarles RH (1982) Presence of the myelin-associated glycoprotein correlates with alterations in the periodicity of peripheral myelin. J Cell Biol 92(3):877–882PubMedCrossRefGoogle Scholar
  28. 28.
    Bartsch U, Kirchhoff F, Schachner M (1989) Immunohistological localization of the adhesion molecules L1, N-CAM, and MAG in the developing and adult optic nerve of mice. J Comp Neurol 284:451–462PubMedCrossRefGoogle Scholar
  29. 29.
    Marbois BN, Faull KF, Fluharty AL, Raval-Fernandes S, Rome LH (2000) Analysis of sulfatide from rat cerebellum and multiple sclerosis white matter by negative ion electrospray mass spectrometry. Biochim Biophys Acta 1484(1):59–70PubMedCrossRefGoogle Scholar
  30. 30.
    Suzuki K, Andrews JM, Waltz JM, Terry RD (1969) Ultrastructural studies of multiple sclerosis. Lab Invest 20(5):444–454PubMedGoogle Scholar
  31. 31.
    Shroff SM, Pomicter AD, Chow WN, Fox MA, Colello RJ, Henderson SC, Dupree JL (2009) Adult CST-null mice maintain an increased number of oligodendrocytes. J Neurosci Res 87(15):3403–3414PubMedCrossRefGoogle Scholar
  32. 32.
    Ogawa Y, Rasband MN (2009) Proteomic analysis of optic nerve lipid rafts reveals new paranodal proteins. J Neurosci Res 87(15):3502–3510PubMedCrossRefGoogle Scholar
  33. 33.
    Heffer-Lauc M, Viljetić B, Vajn K, Schnaar RL, Lauc G (2007) Effects of detergents on the redistribution of gangliosides and GPI-anchored proteins in brain tissue sections. J Histochem Cytochem 55(8):805–812PubMedCrossRefGoogle Scholar
  34. 34.
    Shepherd MN, Pomicter AD, Velazco CS, Henderson SC, Dupree JL (2012) Paranodal reorganization results in the depletion of transverse bands in the aged central nervous system. Neurobiol Aging 33(1):203.e13–203.e24Google Scholar
  35. 35.
    Norton WT, Poduslo SE (1973) Myelination in rat brain: method of myelin isolation. J Neurochem 21(4):749–757PubMedCrossRefGoogle Scholar
  36. 36.
    Sato C, Larocca JN, Bálsamo N, Pasquini JM, Soto EF (1985) Neonatal malnutrition in the rat affects the delivery of sulfatides from microsomes and their entry into myelin. Neurochem Res 10(2):179–189PubMedCrossRefGoogle Scholar
  37. 37.
    Sato C, Yu RK (1987) Myelin galactolipid synthesis in different strains of mice. J Neurochem 49(4):1069–1074PubMedCrossRefGoogle Scholar
  38. 38.
    Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophot Internat 11(7):36–42Google Scholar
  39. 39.
    Coetzee T, Fujita N, Dupree J, Shi R, Blight A, Suzuki K, Suzuki K, Popko B (1996) Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86(2):209–219PubMedCrossRefGoogle Scholar
  40. 40.
    Dupree JL, Girault JA, Popko B (1999) Axo-glial interactions regulate the localization of axonal paranodal proteins. J Cell Biol 147(6):1145–1152PubMedCrossRefGoogle Scholar
  41. 41.
    Dupree JL, Mason JL, Marcus JR, Stull M, Levinson R, Matsushima GK, Popko B (2004) Oligodendrocytes assist in the maintenance of sodium channel clusters independent of the myelin sheath. Neuron Glia Biol 1(3):179–192PubMedCrossRefGoogle Scholar
  42. 42.
    Jenkins SM, Bennett V (2001) Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments. J Cell Biol 155:739–746PubMedCrossRefGoogle Scholar
  43. 43.
    Marta CB, Taylor CM, Coetzee T, Kim T, Winkler S, Bansal R, Pfeiffer SE (2003) Antibody cross-linking of myelin oligodendrocyte glycoprotein leads to its rapid repartitioning into detergent-insoluble fractions, and altered protein phosphorylation and cell morphology. J Neurosci 23(13):5461–5471PubMedGoogle Scholar
  44. 44.
    Taylor CM, Coetzee T, Pfeiffer SE (2002) Detergent-insoluble glycosphingolipid/cholesterol microdomains of the myelin membrane. J Neurochem 81(5):993–1004PubMedCrossRefGoogle Scholar
  45. 45.
    Yap CC, Vakulenko M, Kruczek K, Motamedi B, Digilio L, Liu JS, Winckler B (2012) Doublecortin (DCX) mediates endocytosis of neurofascin independently of microtubule binding. J Neurosci 32(22):7439–7453PubMedCrossRefGoogle Scholar
  46. 46.
    Thompson TE, Tillack TW (1985) Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu Rev Biophys Chem 14:361–386CrossRefGoogle Scholar
  47. 47.
    Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochem 27:6197–6202CrossRefGoogle Scholar
  48. 48.
    Babiychuk EB, Draeger A (2006) Biochemical characterization of detergent-resistant membranes: a systematic approach. Biochem J 397(3):407–416PubMedCrossRefGoogle Scholar
  49. 49.
    He M, Jenkins P, Bennett V (2012) Cysteine 70 of ankyrin-g is s-palmitoylated and is required for function of ankyrin-g in membrane domain assembly. J Biol Chem 287(52):43995–44005PubMedCrossRefGoogle Scholar
  50. 50.
    Ren Q, Bennett V (1998) Palmitoylation of neurofascin at a site in the membrane-spanning domain highly conserved among the L1 family of cell adhesion molecules. J Neurochem 70(5):1839–1849PubMedCrossRefGoogle Scholar
  51. 51.
    Drisdel RC, Green WN (2004) Labeling and quantifying sites of protein palmitoylation. Biotechniques 36(2):276–285PubMedGoogle Scholar
  52. 52.
    Pedraza L, Owens GC, Green LA, Salzer JL (1990) The myelin-associated glycoproteins: membrane disposition, evidence of a novel disulfide linkage between immunoglobulin-like domains, and posttranslational palmitylation. J Cell Biol 111:2651–2661PubMedCrossRefGoogle Scholar
  53. 53.
    Arvanitis DN, Min W, Gong Y, Heng YM, Boggs JM (2005) Two types of detergent-insoluble, glycosphingolipid/cholesterol-rich membrane domains from isolated myelin. J Neurochem 94(6):1696–1710PubMedCrossRefGoogle Scholar
  54. 54.
    Rios JC, Melendez-Vasquez CV, Einheber S, Lustig M, Grumet M, Hemperly J, Peles E, Salzer JL (2000) Contactin-associated protein (Caspr) and contactin form a complex that is targeted to the paranodal junctions during myelination. J Neurosci 20:8354–8364PubMedGoogle Scholar
  55. 55.
    Erb M, Flueck B, Kern F, Erne B, Steck AJ, Schaeren-Wiemers N (2006) Unraveling the differential expression of the two isoforms of myelin-associated glycoprotein in a mouse expressing GFP-tagged S-MAG specifically regulated and targeted into the different myelin compartments. Mol Cell Neurosci 31:613–627PubMedCrossRefGoogle Scholar
  56. 56.
    Vyas AA, Schnaar RL (2001) Brain gangliosides: functional ligands for myelin stability and the control of nerve regeneration. Biochim 83(7):677–682CrossRefGoogle Scholar
  57. 57.
    Vyas AA, Patel HV, Fromholt SE, Heffer-Lauc M, Vyas KA, Dang J, Schachner M, Schnaar RL (2002) Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci USA 99(12):8412–8417PubMedCrossRefGoogle Scholar
  58. 58.
    Kohlschutter A, Herschkowitz NN (1973) Sulfatide synthesis in neurons: a defect in mice with a hereditary myelination disorder. Brain Res 50:379–385PubMedCrossRefGoogle Scholar
  59. 59.
    DeVries GH, Zmachinski CJ (1980) The lipid composition of rat CNS axolemma-enriched fractions. J Neurochem 34:424–430CrossRefGoogle Scholar
  60. 60.
    Pernber Z, Molander-Melin M, Berthold CH, Hansson E, Fredman P (2002) Expression of the myelin and oligodendrocyte progenitor marker sulfatide in neurons and astrocytes of adult rat brain. J Neurosci Res 69:86–93PubMedCrossRefGoogle Scholar
  61. 61.
    Krämer EM, Klein C, Koch T, Boytinck M, Trotter J (1999) Compartmentation of fyn kinase with glycosylphosphatidylinositol-anchored molecules in oligodendrocytes facilitates kinase activation during myelination. J Biol Chem 274(41):29042–29049PubMedCrossRefGoogle Scholar
  62. 62.
    Kim T, Pfeiffer SE (1999) Myelin glycosphingolipid/cholesterolenriched microdomains selectively sequester the non-compact myelin proteins CNP and MOG. J Neurocytol 28:281–293PubMedCrossRefGoogle Scholar
  63. 63.
    Levental I, Grzybek M, Simons K (2010) Greasing their way: lipid modifications determine protein association with membrane rafts. Biochem 49(30):6305–6316CrossRefGoogle Scholar
  64. 64.
    Esposito C, Scrima M, Carotenuto A, Tedeschi A, Rovero P, D’Errico G, Malfitano AM, Bifulco M, D’Ursi AM (2008) Structures and micelle locations of the nonlipidated and lipidated C-terminal membrane anchor of 2’,3’-cyclic nucleotide-3’-phosphodiesterase. Biochemistry 47(1):308–319PubMedCrossRefGoogle Scholar
  65. 65.
    Melkonian KA, Ostermeyer AG, Chen JZ, Roth MG, Brown DA (1999) Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J Biol Chem 274(6):3910–3917PubMedCrossRefGoogle Scholar
  66. 66.
    Krämer EM, Koch T, Niehaus A, Trotter J (1997) Oligodendrocytes direct glycosyl phosphatidylinositol-anchored proteins to the myelin sheath in glycosphingolipid-rich complexes. J Biol Chem 272(14):8937–8945PubMedCrossRefGoogle Scholar
  67. 67.
    Arvanitis DN, Yang W, Boggs JM (2002) Myelin proteolipid protein, basic protein, the small isoform of myelin-associated glycoprotein, and p42MAPK are associated in the Triton X-100 extract of central nervous system myelin. J Neurosci Res 70(1):8–23PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. D. Pomicter
    • 1
  • J. M. DeLoyht
    • 1
    • 2
  • A. R. Hackett
    • 1
  • N. Purdie
    • 1
  • C. Sato-Bigbee
    • 3
  • S. C. Henderson
    • 1
  • J. L. Dupree
    • 1
  1. 1.Department of Anatomy and NeurobiologyVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of Neuroscience CurriculumVirginia Commonwealth UniversityRichmondUSA
  3. 3.Department of Biochemistry and Molecular BiologyVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations