Neurochemical Research

, Volume 38, Issue 10, pp 2216–2226 | Cite as

Store-Operated Ca2+ Channels Blockers Inhibit Lipopolysaccharide Induced Astrocyte Activation

  • Jian-Hua Li
  • Shen-Ting Zhao
  • Cui-Ying Wu
  • Xiong Cao
  • Miao-Ru Peng
  • Shu-Ji Li
  • Xiao-Ai Liu
  • Tian-Ming Gao
Original Paper


The destruction of calcium homeostasis is an important factor leading to neurological diseases. Store-operated Ca2+ (SOC) channels are essential for Ca2+ homeostasis in many cell types. However, whether SOC channels are involved in astrocyte activation induced by lipopolysaccharide (LPS) still remains unknown. In this study, we used LPS as an exogenous stimulation to investigate the role of SOC channels in astrocyte activation. Using calcium imaging technology, we first found that SOC channels blockers, 1-[h-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365) and 2-aminoethyldiphenyl borate (2-APB), inhibited LPS induced [Ca2+]i increase, which prompted us to speculate that SOC channels may be involved in LPS induced astrocyte activation. Further experiments confirmed our speculation shown as SOC channels blockers inhibited LPS induced astrocyte activation characterized as cell proliferation by MTS and BrdU assay, raise in glial fibrillary acidic protein expression by immunofluorescence and Western Blot and secretion of interleukin 6 (IL-6) and interleukin 1β (IL-1β) by ELISA. So, our studies showed that SOC channels are involved in LPS-induced astrocyte activation.


SOC channels Astrocyte activation LPS 



We would like to thank Karrune Woan and Jun-Min Zhou for assistance in preparation of the Main manuscript. This work was supported by Natural Science Foundation of Guangdong Province (NO. 8151018201000039), Key Research Foundation of Guangzhou Education Bureau (2012C043) to JHL, National Natural Science Foundation of China (NO. 81100986), Research Foundation of Guangzhou Education Bureau (NO. 10A154) and Breeding Project of Guangdong Province (NO. LYM11105) to ZST.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11064_2013_1130_MOESM1_ESM.ppt (64 kb)
Supplemental Fig 1 Increased cell viability by LPS for 48 h. The viability was examined by MTS assay. n=3. Results are mean±SE of different independent experiments. *P < 0.05 vs. control group (PPT 64 kb)
11064_2013_1130_MOESM2_ESM.ppt (64 kb)
Supplemental Fig 2 Increased percentage of BrdU positive cells by LPS for 48 h. Data of BrdU positive cells were presented as percentage of the control group. n=15. Results are mean±SE of different independent experiments. *P < 0.05 vs. control group (PPT 64 kb)
11064_2013_1130_MOESM3_ESM.ppt (6.8 mb)
Supplemental Fig 3 GFAP increased expression induced by LPS. Cells were incubated with 0.5μg/ml LPS for different incubation time. (a) The immunofluorescence of GFAP (green), Co-staining with DAPI (blue) allowed the identification of the nucleus. (b) Representative western blot showing the expression of GFAP. (c) Quantification of the expression of GFAP. Results are mean±SE of four different independent experiments. *P < 0.05 vs. 0 h group (PPT 6914 kb)
11064_2013_1130_MOESM4_ESM.ppt (274 kb)
Supplemental Fig 4 Increased IL-6 and IL-1β by LPS. Cells were incubated with 0.5μg/ml LPS for different incubation time. (a) The level of IL-6. n=4. (b) The level of IL-1β. n=4. Results are mean±SE of four different independent experiments. *P < 0.05 vs. 0 h group (PPT 274 kb)


  1. 1.
    Yu AC, Lee YL, Eng LF (1993) Astrogliosis in culture: I. The model and the effect of antisense oligonucleotides on glial fibrillary acidic protein synthesis. J Neurosci Res 34(3):295–303. doi: 10.1002/jnr.490340306 PubMedCrossRefGoogle Scholar
  2. 2.
    Suryadevara R, Holter S, Borgmann K, Persidsky R, Labenz-Zink C, Persidsky Y, Gendelman HE, Wu L, Ghorpade A (2003) Regulation of tissue inhibitor of metalloproteinase-1 by astrocytes: links to HIV-1 dementia. Glia 44(1):47–56. doi: 10.1002/glia.10266 PubMedCrossRefGoogle Scholar
  3. 3.
    Neil SJ, Aasa-Chapman MM, Clapham PR, Nibbs RJ, McKnight A, Weiss RA (2005) The promiscuous CC chemokine receptor D6 is a functional coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and HIV-2 on astrocytes. J Virol 79(15):9618–9624. doi: 10.1128/JVI.79.15.9618-9624.2005 PubMedCrossRefGoogle Scholar
  4. 4.
    Eng LF, Ghirnikar RS (1994) GFAP and astrogliosis. Brain Pathol 4(3):229–237PubMedCrossRefGoogle Scholar
  5. 5.
    Villereal ML, Byron KL (1992) Calcium signals in growth factor signal transduction. Rev Physiol Biochem Pharmacol 119:67–121PubMedGoogle Scholar
  6. 6.
    Berridge MJ (1995) Calcium signalling and cell proliferation. BioEssays 17(6):491–500. doi: 10.1002/bies.950170605 PubMedCrossRefGoogle Scholar
  7. 7.
    Berridge MJ (2001) The versatility and complexity of calcium signalling. Novartis Found Symp 239:52–64; discussion 64–57, 150–159PubMedCrossRefGoogle Scholar
  8. 8.
    Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21. doi: 10.1038/35036035 PubMedCrossRefGoogle Scholar
  9. 9.
    Putney JW Jr (2004) The enigmatic TRPCs: multifunctional cation channels. Trends Cell Biol 14(6):282–286. doi: 10.1016/j.tcb.2004.04.002 PubMedCrossRefGoogle Scholar
  10. 10.
    Parekh AB (2003) Store-operated Ca2+ entry: dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane. J Physiol 547(Pt 2):333–348. doi: 10.1113/jphysiol.2002.034140 PubMedCrossRefGoogle Scholar
  11. 11.
    Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77(4):901–930PubMedGoogle Scholar
  12. 12.
    Kozuka N, Kudo Y, Morita M (2007) Multiple inhibitory pathways for lipopolysaccharide- and pro-inflammatory cytokine-induced nitric oxide production in cultured astrocytes. Neuroscience 144(3):911–919. doi: 10.1016/j.neuroscience.2006.10.040 PubMedCrossRefGoogle Scholar
  13. 13.
    Hosoi T, Suzuki S, Okuma Y, Kawakami A, Ogawa N, Ozawa K, Nomura Y (2005) LPS induces stefin A3 expression in mouse primary cultured glial cells. Brain Res Mol Brain Res 140(1–2):138–141. doi: 10.1016/j.molbrainres.2005.07.007 PubMedCrossRefGoogle Scholar
  14. 14.
    Zhao ST, Zhao L, Li JH (2013) Neuroprotective Peptide humanin inhibits inflammatory response in astrocytes induced by lipopolysaccharide. Neurochem Res 38(3):581–588. doi: 10.1007/s11064-012-0951-6 PubMedCrossRefGoogle Scholar
  15. 15.
    Zhao ST, Huang XT, Zhang C, Ke Y (2012) Humanin protects cortical neurons from ischemia and reperfusion injury by the increased activity of superoxide dismutase. Neurochem Res 37(1):153–160. doi: 10.1007/s11064-011-0593-0 PubMedCrossRefGoogle Scholar
  16. 16.
    Zhao ST, Chen M, Li SJ, Zhang MH, Li BX, Das M, Bean JC, Kong JM, Zhu XH, Gao TM (2009) Mitochondrial BNIP3 upregulation precedes endonuclease G translocation in hippocampal neuronal death following oxygen-glucose deprivation. BMC Neurosci 10:113. doi: 10.1186/1471-2202-10-113 PubMedCrossRefGoogle Scholar
  17. 17.
    Eng LF, Yu AC, Lee YL (1992) Astrocytic response to injury. Prog Brain Res 94:353–365PubMedCrossRefGoogle Scholar
  18. 18.
    Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36(2):180–190. doi: 10.1002/glia.1107 PubMedCrossRefGoogle Scholar
  19. 19.
    Koizumi S, Fujishita K (2007) Gliotransmitter ATP-mediated cell-to-cell communication. Brain Nerve 59(7):707–715PubMedGoogle Scholar
  20. 20.
    Koehler RC, Roman RJ, Harder DR (2009) Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 32(3):160–169. doi: 10.1016/j.tins.2008.11.005 PubMedCrossRefGoogle Scholar
  21. 21.
    Rolls A, Shechter R, Schwartz M (2009) The bright side of the glial scar in CNS repair. Nat Rev Neurosci 10(3):235–241. doi: 10.1038/nrn2591 PubMedCrossRefGoogle Scholar
  22. 22.
    Buffo A, Rolando C, Ceruti S (2010) Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential. Biochem Pharmacol 79(2):77–89. doi: 10.1016/j.bcp.2009.09.014 PubMedCrossRefGoogle Scholar
  23. 23.
    Bading H, Ginty DD, Greenberg ME (1993) Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260(5105):181–186PubMedCrossRefGoogle Scholar
  24. 24.
    Bezprozvanny I (2009) Calcium signaling and neurodegenerative diseases. Trends Mol Med 15(3):89–100. doi: 10.1016/j.molmed.2009.01.001 PubMedCrossRefGoogle Scholar
  25. 25.
    Marambaud P, Dreses-Werringloer U, Vingtdeux V (2009) Calcium signaling in neurodegeneration. Mol Neurodegener 4:20. doi: 10.1186/1750-1326-4-20 PubMedCrossRefGoogle Scholar
  26. 26.
    Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810. doi: 10.1152/physrev.00057.2003 PubMedCrossRefGoogle Scholar
  27. 27.
    Berridge MJ (2005) Unlocking the secrets of cell signaling. Annu Rev Physiol 67:1–21. doi: 10.1146/annurev.physiol.67.040103.152647 PubMedCrossRefGoogle Scholar
  28. 28.
    Strokin M, Sergeeva M, Reiser G (2011) Proinflammatory treatment of astrocytes with lipopolysaccharide results in augmented Ca2+ signaling through increased expression of via phospholipase A2 (iPLA2). Am J Physiol Cell Physiol 300(3):C542–C549. doi: 10.1152/ajpcell.00428.2010 PubMedCrossRefGoogle Scholar
  29. 29.
    Sherwin C, Fern R (2005) Acute lipopolysaccharide-mediated injury in neonatal white matter glia: role of TNF-alpha, IL-1beta, and calcium. J Immunol 175(1):155–161PubMedGoogle Scholar
  30. 30.
    Putney JW Jr, McKay RR (1999) Capacitative calcium entry channels. BioEssays 21(1):38–46. doi: 10.1002/(SICI)1521-1878(199901)21:1<38:AID-BIES5>3.0.CO;2-S PubMedCrossRefGoogle Scholar
  31. 31.
    Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem 122(3):498–505PubMedCrossRefGoogle Scholar
  32. 32.
    Gregory RB, Rychkov G, Barritt GJ (2001) Evidence that 2-aminoethyl diphenylborate is a novel inhibitor of store-operated Ca2+ channels in liver cells, and acts through a mechanism which does not involve inositol trisphosphate receptors. Biochem J 354(Pt 2):285–290PubMedCrossRefGoogle Scholar
  33. 33.
    Braun FJ, Broad LM, Armstrong DL, Putney JW Jr (2001) Stable activation of single Ca2+ release-activated Ca2+ channels in divalent cation-free solutions. J Biol Chem 276(2):1063–1070. doi: 10.1074/jbc.M008348200 PubMedCrossRefGoogle Scholar
  34. 34.
    Broad LM, Braun FJ, Lievremont JP, Bird GS, Kurosaki T, Putney JW Jr (2001) Role of the phospholipase C-inositol 1,4,5-trisphosphate pathway in calcium release-activated calcium current and capacitative calcium entry. J Biol Chem 276(19):15945–15952. doi: 10.1074/jbc.M011571200 PubMedCrossRefGoogle Scholar
  35. 35.
    Ma HT, Patterson RL, van Rossum DB, Birnbaumer L, Mikoshiba K, Gill DL (2000) Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 287(5458):1647–1651. doi: 10.1126/science.287.5458.1647 PubMedCrossRefGoogle Scholar
  36. 36.
    Prakriya M, Lewis RS (2001) Potentiation and inhibition of Ca(2+) release-activated Ca(2+) channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP(3) receptors. J Physiol 536(Pt 1):3–19. doi: 10.1111/j.1469-7793.2001.t01-1-00003.x PubMedCrossRefGoogle Scholar
  37. 37.
    Bakowski D, Glitsch MD, Parekh AB (2001) An examination of the secretion-like coupling model for the activation of the Ca2+ release-activated Ca2+ current I(CRAC) in RBL-1 cells. J Physiol 532(Pt 1):55–71. doi: 10.1111/j.1469-7793.2001.0055g.x PubMedCrossRefGoogle Scholar
  38. 38.
    Ma HT, Venkatachalam K, Li HS, Montell C, Kurosaki T, Patterson RL, Gill DL (2001) Assessment of the role of the inositol 1,4,5-trisphosphate receptor in the activation of transient receptor potential channels and store-operated Ca2+ entry channels. J Biol Chem 276(22):18888–18896. doi: 10.1074/jbc.M100944200 PubMedCrossRefGoogle Scholar
  39. 39.
    Voets T, Prenen J, Fleig A, Vennekens R, Watanabe H, Hoenderop JG, Bindels RJ, Droogmans G, Penner R, Nilius B (2001) CaT1 and the calcium release-activated calcium channel manifest distinct pore properties. J Biol Chem 276(51):47767–47770. doi: 10.1074/jbc.C100607200 PubMedGoogle Scholar
  40. 40.
    Missiaen L, Callewaert G, De Smedt H, Parys JB (2001) 2-Aminoethoxydiphenyl borate affects the inositol 1,4,5-trisphosphate receptor, the intracellular Ca2+ pump and the non-specific Ca2+ leak from the non-mitochondrial Ca2+ stores in permeabilized A7r5 cells. Cell Calcium 29(2):111–116. doi: 10.1054/ceca.2000.0163 PubMedCrossRefGoogle Scholar
  41. 41.
    Hermosura MC, Monteilh-Zoller MK, Scharenberg AM, Penner R, Fleig A (2002) Dissociation of the store-operated calcium current I(CRAC) and the Mg-nucleotide-regulated metal ion current MagNuM. J Physiol 539(Pt 2):445–458. doi: 10.1113/jphysiol.2001.013361 PubMedCrossRefGoogle Scholar
  42. 42.
    Schindl R, Kahr H, Graz I, Groschner K, Romanin C (2002) Store depletion-activated CaT1 currents in rat basophilic leukemia mast cells are inhibited by 2-aminoethoxydiphenyl borate. Evidence for a regulatory component that controls activation of both CaT1 and CRAC (Ca(2+) release-activated Ca(2+) channel) channels. J Biol Chem 277(30):26950–26958. doi: 10.1074/jbc.M203700200 PubMedCrossRefGoogle Scholar
  43. 43.
    Dobrydneva Y, Blackmore P (2001) 2-Aminoethoxydiphenyl borate directly inhibits store-operated calcium entry channels in human platelets. Mol Pharmacol 60(3):541–552PubMedGoogle Scholar
  44. 44.
    Iwasaki H, Mori Y, Hara Y, Uchida K, Zhou H, Mikoshiba K (2001) 2-Aminoethoxydiphenyl borate (2-APB) inhibits capacitative calcium entry independently of the function of inositol 1,4,5-trisphosphate receptors. Recept Channels 7(6):429–439PubMedGoogle Scholar
  45. 45.
    DeHaven WI, Smyth JT, Boyles RR, Bird GS, Putney JW Jr (2008) Complex actions of 2-aminoethyldiphenyl borate on store-operated calcium entry. J Biol Chem 283(28):19265–19273. doi: 10.1074/jbc.M801535200 PubMedCrossRefGoogle Scholar
  46. 46.
    Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Peppiatt CM (2002) 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J 16(10):1145–1150. doi: 10.1096/fj.02-0037rev PubMedCrossRefGoogle Scholar
  47. 47.
    Peinelt C, Lis A, Beck A, Fleig A, Penner R (2008) 2-Aminoethoxydiphenyl borate directly facilitates and indirectly inhibits STIM1-dependent gating of CRAC channels. J Physiol 586(13):3061–3073. doi: 10.1113/jphysiol.2008.151365 PubMedCrossRefGoogle Scholar
  48. 48.
    Wang JP (2003) Characterization of maleimide-activated Ca2+ entry in neutrophils. Biochem Pharmacol 65(12):1923–1929. doi: 10.1016/S0006-2952(03)00194-1 PubMedCrossRefGoogle Scholar
  49. 49.
    Kukkonen JP, Lund PE, Akerman KE (2001) 2-aminoethoxydiphenyl borate reveals heterogeneity in receptor-activated Ca(2+) discharge and store-operated Ca(2+) influx. Cell Calcium 30(2):117–129. doi: 10.1054/ceca.2001.0219 PubMedCrossRefGoogle Scholar
  50. 50.
    Baba A, Yasui T, Fujisawa S, Yamada RX, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y (2003) Activity-evoked capacitative Ca2+ entry: implications in synaptic plasticity. J Neurosci 23(21):7737–7741PubMedGoogle Scholar
  51. 51.
    Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25(9–10):1439–1451PubMedCrossRefGoogle Scholar
  52. 52.
    Liedtke W, Edelmann W, Bieri PL, Chiu FC, Cowan NJ, Kucherlapati R, Raine CS (1996) GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17(4):607–615. doi: 10.1016/S0896-6273(00)80194-4 PubMedCrossRefGoogle Scholar
  53. 53.
    Messing A, Goldman JE, Johnson AB, Brenner M (2001) Alexander disease: new insights from genetics. J Neuropathol Exp Neurol 60(6):563–573PubMedGoogle Scholar
  54. 54.
    Sriram K, Benkovic SA, Hebert MA, Miller DB, O’Callaghan JP (2004) Induction of gp130-related cytokines and activation of JAK2/STAT3 pathway in astrocytes precedes up-regulation of glial fibrillary acidic protein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of neurodegeneration: key signaling pathway for astrogliosis in vivo? J Biol Chem 279(19):19936–19947. doi: 10.1074/jbc.M309304200 PubMedCrossRefGoogle Scholar
  55. 55.
    Van Wagoner NJ, Benveniste EN (1999) Interleukin-6 expression and regulation in astrocytes. J Neuroimmunol 100(1–2):124–139. doi: 10.1016/S0165-5728(99)00187-3 PubMedCrossRefGoogle Scholar
  56. 56.
    Rothwell NJ, Luheshi GN (2000) Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci 23(12):618–625. doi: 10.1016/S0166-2236(00)01661-1 PubMedCrossRefGoogle Scholar
  57. 57.
    Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7(2):99–109. doi: 10.1038/nrmicro2070 PubMedCrossRefGoogle Scholar
  58. 58.
    Blum-Degen D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P (1995) Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202(1–2):17–20PubMedCrossRefGoogle Scholar
  59. 59.
    Jones SA, Horiuchi S, Topley N, Yamamoto N, Fuller GM (2001) The soluble interleukin 6 receptor: mechanisms of production and implications in disease. FASEB J 15(1):43–58. doi: 10.1096/fj.99-1003rev PubMedCrossRefGoogle Scholar
  60. 60.
    Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21(3):383–421PubMedCrossRefGoogle Scholar
  61. 61.
    Sattayaprasert P, Choi HB, Chongthammakun S, McLarnon JG (2005) Platelet-activating factor enhancement of calcium influx and interleukin-6 expression, but not production, in human microglia. J Neuroinflammation 2(1):11. doi: 10.1186/1742-2094-2-11 PubMedCrossRefGoogle Scholar
  62. 62.
    Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J, Pani B, Gwack Y, Srikanth S, Singh BB, Gill DL, Ambudkar IS (2007) Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282(12):9105–9116. doi: 10.1074/jbc.M608942200 PubMedCrossRefGoogle Scholar
  63. 63.
    Pizzo P, Burgo A, Pozzan T, Fasolato C (2001) Role of capacitative calcium entry on glutamate-induced calcium influx in type-I rat cortical astrocytes. J Neurochem 79(1):98–109PubMedCrossRefGoogle Scholar
  64. 64.
    Barajas M, Andrade A, Hernandez–Hernandez O, Felix R, Arias-Montano JA (2008) Histamine-induced Ca2+ entry in human astrocytoma U373 MG cells: evidence for involvement of store-operated channels. J Neurosci Res 86(15):3456–3468. doi: 10.1002/jnr.21784 PubMedCrossRefGoogle Scholar
  65. 65.
    Grimaldi M, Maratos M, Verma A (2003) Transient receptor potential channel activation causes a novel form of [Ca2+]I oscillations and is not involved in capacitative Ca2+ entry in glial cells. J Neurosci 23(11):4737–4745PubMedGoogle Scholar
  66. 66.
    Golovina VA (2005) Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum. J Physiol 564(Pt 3):737–749. doi: 10.1113/jphysiol.2005.085035 PubMedCrossRefGoogle Scholar
  67. 67.
    Ambudkar IS (2006) Ca2+ signaling microdomains:platforms for the assembly and regulation of TRPC channels. Trends Pharmacol Sci 27(1):25–32. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  68. 68.
    Song X, Zhao Y, Narcisse L, Duffy H, Kress Y, Lee S, Brosnan CF (2005) Canonical transient receptor potential channel 4 (TRPC4) co-localizes with the scaffolding protein ZO-1 in human fetal astrocytes in culture. Glia 49(3):418–429. doi: 10.1002/glia.20128 PubMedCrossRefGoogle Scholar
  69. 69.
    Beskina O, Miller A, Mazzocco-Spezzia A, Pulina MV, Golovina VA (2007) Mechanisms of interleukin-1beta-induced Ca2+ signals in mouse cortical astrocytes: roles of store- and receptor-operated Ca2+ entry. Am J Physiol Cell Physiol 293(3):C1103–C1111. doi: 10.1152/ajpcell.00249.2007 PubMedCrossRefGoogle Scholar
  70. 70.
    Malarkey EB, Ni Y, Parpura V (2008) Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia 56(8):821–835. doi: 10.1002/glia.20656 PubMedCrossRefGoogle Scholar
  71. 71.
    Moreno C, Sampieri A, Vivas O, Pena-Segura C, Vaca L (2012) STIM1 and Orai1 mediate thrombin-induced Ca(2+) influx in rat cortical astrocytes. Cell Calcium 52(6):457–467. doi: 10.1016/j.ceca.2012.08.004 PubMedCrossRefGoogle Scholar
  72. 72.
    Nakao K, Shirakawa H, Sugishita A, Matsutani I, Niidome T, Nakagawa T, Kaneko S (2008) Ca2+ mobilization mediated by transient receptor potential canonical 3 is associated with thrombin-induced morphological changes in 1321N1 human astrocytoma cells. J Neurosci Res 86(12):2722–2732. doi: 10.1002/jnr.21711 PubMedCrossRefGoogle Scholar
  73. 73.
    Rychkov G, Barritt GJ (2007) TRPC1 Ca(2+)-permeable channels in animal cells. Handb Exp Pharmacol 179:23–52. doi: 10.1007/978-3-540-34891-7_2 PubMedCrossRefGoogle Scholar
  74. 74.
    Xu SZ, Zeng F, Boulay G, Grimm C, Harteneck C, Beech DJ (2005) Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol 145(4):405–414. doi: 10.1038/sj.bjp.0706197 PubMedCrossRefGoogle Scholar
  75. 75.
    Merritt JE, Armstrong WP, Benham CD, Hallam TJ, Jacob R, Jaxa-Chamiec A, Leigh BK, McCarthy SA, Moores KE, Rink TJ (1990) SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J 271(2):515–522PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jian-Hua Li
    • 1
  • Shen-Ting Zhao
    • 1
  • Cui-Ying Wu
    • 2
  • Xiong Cao
    • 2
  • Miao-Ru Peng
    • 1
  • Shu-Ji Li
    • 2
  • Xiao-Ai Liu
    • 1
  • Tian-Ming Gao
    • 2
  1. 1.Department of PhysiologyGuangzhou Medical UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of NeurobiologySouthern Medical UniversityGuangzhouPeople’s Republic of China

Personalised recommendations