Neurochemical Research

, Volume 38, Issue 10, pp 2095–2104 | Cite as

Tat-Collapsin Response Mediator Protein 2 (CRMP2) Increases the Survival of Neurons After NMDA Excitotoxity by Reducing the Cleavage of CRMP2

  • Yanling Yin
  • Yansong Wang
  • Lumian Chen
  • Song Han
  • Li Zhao
  • Yanlin Luo
  • Junfa Li
Original Paper


Collapsin response mediator protein 2 (CRMP2) is a brain-specific multifunctional adaptor protein involved in neuronal polarity and axonal guidance. Our previous results showed CRMP2 may be involved in the hypoxic preconditioning and ischemic injury, but the mechanism was not clear. This study explored whether CRMP2 was involved in NMDA-induced neural death, and the possible mechanism. Western blot analysis demonstrated that NMDA reduced the phosphorylation of CRMP2 and inspired the cleavage of CRMP2. Also, it was detected that NMDA treatment did not affect the phosphorylation of CRMP2 in early stage (<6 h). Over-expression of CRMP2 aggravated the NMDA-induced injury, suggesting the vital role of CRMP2 in excitotoxicity. Tat-CRMP2 was designed to provide the cleavage site of calpain. Thiazolyl blue tetrazolium bromide assay, Hoechst33342/Propidium Iodide staining and Western blot assay showed that Tat-CRMP2 pretreatment increased cell viability compared with the control group against NMDA exposure by decreasing the cleavage of CRMP2. In conclusion, these studies indicated that cleavage of CRMP2 plays an important role involved in the NMDA-induced injury. The cleavage of CRMP2 may be a promising target for excitatory amino acid-related ischemic and hypoxic injury.


NMDA CRMP2 Western blot assay Hoechst33342-PI staining Primary hippocampal neurons N2A cells 



This work was supported by the following grants: National Natural Science Foundation of China (30871219, 31200895, 31071048), China 973 Pre-program (2011CB512109), Ph.D. Programs Foundation of Ministry of Education of China (20091107110001).


  1. 1.
    Deo RC, Schmidt EF, Elhabazi A, Togashi H, Burley SK, Strittmatter SM (2004) Structural bases for CRMP function in plexin-dependent semaphorin3A signaling. EMBO J 23:9–22PubMedCrossRefGoogle Scholar
  2. 2.
    Charrier E, Reibel S, Rogemond V, Aguera M, Thomasset N, Honnorat J (2003) Collapsin response mediator proteins (CRMPs): involvement in nervous system development and adult neurodegenerative disorders. Mol Neurobiol 28:51–64PubMedCrossRefGoogle Scholar
  3. 3.
    Nishimura T, Fukata Y, Kato K, Yamaguchi T, Matsuura Y, Kamiguchi H, Kaibuchi K (2003) CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth. Nat Cell Biol 5:819–826PubMedCrossRefGoogle Scholar
  4. 4.
    Kimura T, Watanabe H, Iwamatsu A, Kaibuchi K (2005) Tubulin and CRMP-2 complex is transported via Kinesin-1. J Neurochem 93:1371–1382PubMedCrossRefGoogle Scholar
  5. 5.
    Fei T, Xia K, Li ZW, Zhou B, Zhu SS, Chen H, Zhang JP, Chen Z, Xiao HS, Han JDJ, Chen YG (2010) Genome-wide mapping of SMAD target genes reveals the role of BMP signaling in embryonic stem cell fate determination. Genome Res 20:36–44PubMedCrossRefGoogle Scholar
  6. 6.
    Goshima Y, Nakamura F, Strittmatter P, Strittmatter SM (1995) Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376:509–514PubMedCrossRefGoogle Scholar
  7. 7.
    Brown M, Jacobs T, Eickholt B, Ferrari G, Teo M, Monfries C, Qi RZ, Leung T, Lim L, Hall C (2004) Alpha2-chimaerin, cyclin-dependent Kinase 5/p35, and its target collapsin response mediator protein-2 are essential components in semaphorin 3A-induced growth-cone collapse. J Neurosci 24:8994–9004PubMedCrossRefGoogle Scholar
  8. 8.
    Uchida Y, Ohshima T, Sasaki Y, Suzuki H, Yanai S, Yamashita N, Nakamura F, Takei K, Ihara Y, Mikoshiba K, Kolattukudy P, Honnorat J, Goshima Y (2005) Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease. Genes Cells 10:165–179PubMedCrossRefGoogle Scholar
  9. 9.
    Cole AR, Knebel A, Morrice NA, Robertson LA, Irving AJ, Connolly CN, Sutherland C (2004) GSK-3 phosphorylation of the Alzheimer epitope within collapsin response mediator proteins regulates axon elongation in primary neurons. J Biol Chem 279:50176–50180PubMedCrossRefGoogle Scholar
  10. 10.
    Inagaki N, Chihara K, Arimura N, Menager C, Kawano Y, Matsuo N, Nishimura T, Amano M, Kaibuchi K (2001) CRMP-2 induces axons in cultured hippocampal neurons. Nat Neurosci 4:781–782PubMedCrossRefGoogle Scholar
  11. 11.
    Fukata Y, Itoh TJ, Kimura T, Menager C, Nishimura T, Shiromizu T, Watanabe H, Inagaki N, Iwamatsu A, Hotani H, Kaibuchi K (2002) CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 4:583–591PubMedGoogle Scholar
  12. 12.
    Cole AR, Soutar MP, Rembutsu M, van Aalten L, Hastie CJ, McLauchlan H, Peggie M, Balastik M, Lu KP, Sutherland C (2008) Relative resistance of Cdk5-phosphorylated CRMP2 to dephosphorylation. J Biol Chem 283:18227–18237PubMedCrossRefGoogle Scholar
  13. 13.
    Takata K, Kitamura Y, Nakata Y, Matsuoka Y, Tomimoto H, Taniguchi T, Shimohama S (2009) Involvement of WAVE accumulation in Abeta/APP pathology-dependent tangle modification in Alzheimer’s disease. Am J Pathol 175:17–24PubMedCrossRefGoogle Scholar
  14. 14.
    Sato Y, Ishida-Nakajima W, Kawamura M, Miura S, Oguma R, Arai H, Takahashi T (2011) Hypoxia-ischemia induces hypo-phosphorylation of collapsin response mediator protein 2 in a neonatal rat model of periventricular leukomalacia. Brain Res 1386:165–174PubMedCrossRefGoogle Scholar
  15. 15.
    Zhou Y, Bhatia I, Cai Z, He QY, Cheung PT, Chiu JF (2008) Proteomic analysis of neonatal mouse brain: evidence for hypoxia- and ischemia-induced dephosphorylation of collapsin response mediator proteins. J Proteome Res 7:2507–2515PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang Z, Ottens AK, Sadasivan S, Kobeissy FH, Fang T, Hayes RL, Wang KK (2007) Calpain-mediated collapsin response mediator protein-1, -2, and -4 proteolysis after neurotoxic and traumatic brain injury. J Neurotrauma 24:460–472PubMedCrossRefGoogle Scholar
  17. 17.
    Davalos A, Castillo J, Serena J, Noya M (1997) Duration of glutamate release after acute ischemic stroke. Stroke 28:708–710PubMedCrossRefGoogle Scholar
  18. 18.
    Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374PubMedCrossRefGoogle Scholar
  19. 19.
    Dolga AM, Terpolilli N, Kepura F, Nijholt IM, Knaus HG, D’Orsi B, Prehn JH, Eisel UL, Plant T, Plesnila N, Culmsee C (2011) KCa2 channels activation prevents [Ca2+]i deregulation and reduces neuronal death following glutamate toxicity and cerebral ischemia. Cell Death Dis 2:e147PubMedCrossRefGoogle Scholar
  20. 20.
    Bevers MB, Lawrence E, Maronski M, Starr N, Amesquita M, Neumar RW (2009) Knockdown of m-calpain increases survival of primary hippocampal neurons following NMDA excitotoxicity. J Neurochem 108:1237–1250PubMedCrossRefGoogle Scholar
  21. 21.
    Quintanar L, Montiel T, Marquez M, Gonzalez A, Massieu L (2012) Calpain activation is involved in acute manganese neurotoxicity in the rat striatum in vivo. Exp Neurol 233:182–192PubMedCrossRefGoogle Scholar
  22. 22.
    Nimmrich V, Reymann KG, Strassburger M, Schoder UH, Gross G, Hahn A, Schoemaker H, Wicke K, Moller A (2010) Inhibition of calpain prevents NMDA-induced cell death and beta-amyloid-induced synaptic dysfunction in hippocampal slice cultures. Br J Pharmacol 159:1523–1531PubMedCrossRefGoogle Scholar
  23. 23.
    Xu J, Kurup P, Zhang Y, Goebel-Goody SM, Wu PH, Hawasli AH, Baum ML, Bibb JA, Lombroso PJ (2009) Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci 29:9330–9343PubMedCrossRefGoogle Scholar
  24. 24.
    Bu X, Zhang N, Yang X, Liu Y, Du J, Liang J, Xu Q, Li J (2011) Proteomic analysis of cPKCbetaII-interacting proteins involved in HPC-induced neuroprotection against cerebral ischemia of mice. J Neurochem 117:346–356PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang N, Yin Y, Han S, Jiang J, Yang W, Bu X, Li J (2011) Hypoxic preconditioning induced neuroprotection against cerebral ischemic injuries and its cPKCgamma-mediated molecular mechanism. Neurochem Int 58:684–692PubMedCrossRefGoogle Scholar
  26. 26.
    Xing C, Yin Y, He X, Xie Z (1072) Effects of insulin-like growth factor 1 on voltage-gated ion channels in cultured rat hippocampal neurons. Brain Res 2006:30–35Google Scholar
  27. 27.
    Xing C, Yin Y, Chang R, Gong X, He X, Xie Z (2007) Effects of insulin-like growth factor 1 on synaptic excitability in cultured rat hippocampal neurons. Exp Neurol 205:222–229PubMedCrossRefGoogle Scholar
  28. 28.
    Soutar MP, Thornhill P, Cole AR, Sutherland C (2009) Increased CRMP2 phosphorylation is observed in Alzheimer’s disease; does this tell us anything about disease development? Curr Alzheimer Res 6:269–278PubMedCrossRefGoogle Scholar
  29. 29.
    Arimura N, Inagaki N, Chihara K, Menager C, Nakamura N, Amano M, Iwamatsu A, Goshima Y, Kaibuchi K (2000) Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for two separate signaling pathways for growth cone collapse. J Biol Chem 275:23973–23980PubMedCrossRefGoogle Scholar
  30. 30.
    Cole AR, Causeret F, Yadirgi G, Hastie CJ, McLauchlan H, McManus EJ, Hernandez F, Eickholt BJ, Nikolic M, Sutherland C (2006) Distinct priming kinases contribute to differential regulation of collapsin response mediator proteins by glycogen synthase kinase-3 in vivo. J Biol Chem 281:16591–16598PubMedCrossRefGoogle Scholar
  31. 31.
    Williamson R, van Aalten L, Mann DM, Platt B, Plattner F, Bedford L, Mayer J, Howlett D, Usardi A, Sutherland C, Cole AR (2011) CRMP2 hyperphosphorylation is characteristic of Alzheimer’s disease and not a feature common to other neurodegenerative diseases. J Alzheimers Dis 27:615–625PubMedGoogle Scholar
  32. 32.
    Hensley K, Venkova K, Christov A, Gunning W, Park J (2011) Collapsin response mediator protein-2: an emerging pathologic feature and therapeutic target for neurodisease indications. Mol Neurobiol 43:180–191PubMedCrossRefGoogle Scholar
  33. 33.
    Cole AR, Noble W, van Aalten L, Plattner F, Meimaridou R, Hogan D, Taylor M, LaFrancois J, Gunn-Moore F, Verkhratsky A, Oddo S, LaFerla F, Giese KP, Dineley KT, Duff K, Richardson JC, Yan SD, Hanger DP, Allan SM, Sutherland C (2007) Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer’s disease progression. J Neurochem 103:1132–1144PubMedCrossRefGoogle Scholar
  34. 34.
    Yoshida H, Watanabe A, Ihara Y (1998) Collapsin response mediator protein-2 is associated with neurofibrillary tangles in Alzheimer’s disease. J Biol Chem 273:9761–9768PubMedCrossRefGoogle Scholar
  35. 35.
    Hou ST, Jiang SX, Aylsworth A, Ferguson G, Slinn J, Hu H, Leung T, Kappler J, Kaibuchi K (2009) CaMKII phosphorylates collapsin response mediator protein 2 and modulates axonal damage during glutamate excitotoxicity. J Neurochem 111:870–881PubMedCrossRefGoogle Scholar
  36. 36.
    Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K (2005) GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120:137–149PubMedCrossRefGoogle Scholar
  37. 37.
    Lin PC, Chan PM, Hall C, Manser E (2011) Collapsin response mediator proteins (CRMPs) are a new class of microtubule-associated protein (MAP) that selectively interacts with assembled microtubules via a taxol-sensitive binding interaction. J Biol Chem 286:41466–41478Google Scholar
  38. 38.
    Arimura N, Menager C, Kawano Y, Yoshimura T, Kawabata S, Hattori A, Fukata Y, Amano M, Goshima Y, Inagaki M, Morone N, Usukura J, Kaibuchi K (2005) Phosphorylation by Rho kinase regulates CRMP-2 activity in growth cones. Mol Cell Biol 25:9973–9984PubMedCrossRefGoogle Scholar
  39. 39.
    Jiang SX, Kappler J, Zurakowski B, Desbois A, Aylsworth A, Hou ST (2007) Calpain cleavage of collapsin response mediator proteins in ischemic mouse brain. Eur J Neurosci 26:801–809PubMedCrossRefGoogle Scholar
  40. 40.
    Bretin S, Reibel S, Charrier E, Maus-Moatti M, Auvergnon N, Thevenoux A, Glowinski J, Rogemond V, Premont J, Honnorat J, Gauchy C (2005) Differential expression of CRMP1, CRMP2A, CRMP2B, and CRMP5 in axons or dendrites of distinct neurons in the mouse brain. J Comp Neurol 486:1–17PubMedCrossRefGoogle Scholar
  41. 41.
    Katano T, Mabuchi T, Okuda-Ashitaka E, Inagaki N, Kinumi T, Ito S (2006) Proteomic identification of a novel isoform of collapsin response mediator protein-2 in spinal nerves peripheral to dorsal root ganglia. Proteomics 6:6085–6094PubMedCrossRefGoogle Scholar
  42. 42.
    Rogemond V, Auger C, Giraudon P, Becchi M, Auvergnon N, Belin MF, Honnorat J, Moradi-Ameli M (2008) Processing and nuclear localization of CRMP2 during brain development induce neurite outgrowth inhibition. J Biol Chem 283:14751–14761PubMedCrossRefGoogle Scholar
  43. 43.
    Kanamori T, Matsukawa N, Kobayashi H, Uematsu N, Sagisaka T, Toyoda T, Kato D, Oikawa S, Ojika K (2010) Suppressed phosphorylation of collapsin response mediator protein-2 in the hippocampus of HCNP precursor transgenic mice. Brain Res 1355:180–188PubMedCrossRefGoogle Scholar
  44. 44.
    Bretin S, Rogemond V, Marin P, Maus M, Torrens Y, Honnorat J, Glowinski J, Premont J, Gauchy C (2006) Calpain product of WT-CRMP2 reduces the amount of surface NR2B NMDA receptor subunit. J Neurochem 98:1252–1265PubMedCrossRefGoogle Scholar
  45. 45.
    Touma E, Kato S, Fukui K, Koike T (2007) Calpain-mediated cleavage of collapsin response mediator protein(CRMP)-2 during neurite degeneration in mice. Eur J Neurosci 26:3368–3381PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang Z, Majava V, Greffier A, Hayes RL, Kursula P, Wang KK (2009) Collapsin response mediator protein-2 is a calmodulin-binding protein. Cell Mol Life Sci 66:526–536PubMedCrossRefGoogle Scholar
  47. 47.
    Gu Y, Ihara Y (2000) Evidence that collapsin response mediator protein-2 is involved in the dynamics of microtubules. J Biol Chem 275:17917–17920PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yanling Yin
    • 1
  • Yansong Wang
    • 2
  • Lumian Chen
    • 1
  • Song Han
    • 1
  • Li Zhao
    • 1
  • Yanlin Luo
    • 1
  • Junfa Li
    • 1
  1. 1.Department of Neurobiology and Beijing Institute for Brain DisordersCapital Medical UniversityBeijingPeople’s Republic of China
  2. 2.Department of Spine SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China

Personalised recommendations