Neurochemical Research

, Volume 38, Issue 5, pp 1055–1062 | Cite as

Effect of GABA Receptor Agonists or Antagonists Injected Spinally on the Blood Glucose Level in Mice

  • Yun-Beom Sim
  • Soo-Hyun Park
  • Yu-Jung Kang
  • Sung-Su Kim
  • Chea-Ha Kim
  • Su-Jin Kim
  • Jun-Sub Jung
  • Ohk-Hyun Ryu
  • Moon-Gi Choi
  • Hong-Won Suh
Original Paper


The possible roles of gamma-amino butyric acid (GABA) receptors located in the spinal cord for the regulation of the blood glucose level were studied in ICR mice. We found in the present study that intrathecal (i.t.) injection with baclofen (a GABAB receptor agonist; 1–10 μg/5 μl) or bicuculline (a GABAA receptor antagonist; 1–10 μg/5 μl) caused an elevation of the blood glucose level in a dose-dependent manner. The hyperglycemic effect induced by baclofen was more pronounced than that induced by bicuculline. However, muscimol (a GABAA receptor agonist; 1–5 μg/5 μl) or phaclofen (a GABAB receptor antagonist; 5–10 μg/5 μl) administered i.t. did not affect the blood glucose level. Baclofen–induced elevation of the blood glucose was dose-dependently attenuated by phaclofen. Furthermore, i.t. pretreatment with pertussis toxin (PTX; 0.05 or 0.1 μg/5 μl) for 6 days dose-dependently reduced the hyperglycemic effect induced by baclofen. Our results suggest that GABAB receptors located in the spinal cord play important roles for the elevation of the blood glucose level. Spinally located PTX-sensitive G-proteins appear to be involved in hyperglycemic effect induced by baclofen. Furthermore, inactivation of GABAA receptors located in the spinal cord appears to be responsible for tonic up-regulation of the blood glucose level.


GABA receptor Blood glucose Spinal cord Intrathecal Pertussis toxin 



This research was supported by Priority Research Centers (2012-R1A6A1048184) and Basic Science Research (2012-0001569) Programs through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology and Hallym University Research Fund, 2012 (HRF-S-2012-5).


  1. 1.
    Davidoff RA (1985) Antispasticity drugs: mechanisms of action. Ann Neurol 17(2):107–116PubMedCrossRefGoogle Scholar
  2. 2.
    Krantis A (2000) GABA in the mammalian enteric nervous system. News Physiol Sci 15:284–290PubMedGoogle Scholar
  3. 3.
    Pinard A, Seddik R, Bettler B (2010) GABAB receptors: physiological functions and mechanisms of diversity. Adv Pharmacol 58:231–255PubMedCrossRefGoogle Scholar
  4. 4.
    Whiting PJ (2003) GABA-A receptor subtypes in the brain: a paradigm for CNS drug discovery? Drug Discov Today 8(10):445–450PubMedCrossRefGoogle Scholar
  5. 5.
    Feldman RG, Kelly-Hayes M, Conomy JP, Foley JM (1978) Baclofen for spasticity in multiple sclerosis. Double-blind crossover and 3-year study. Neurology 28(11):1094–1098PubMedCrossRefGoogle Scholar
  6. 6.
    Lazorthes Y, Sallerin-Caute B, Verdie JC, Bastide R, Carillo JP (1990) Chronic intrathecal baclofen administration for control of severe spasticity. J Neurosurg 72(3):393–402PubMedCrossRefGoogle Scholar
  7. 7.
    Kawai Unger RH (1983) Effects of gamma-aminobutyric acid on insulin, glucagon, and somatostatin release from isolated perfused dog pancreas. Endocrinology 113(1):111–113PubMedCrossRefGoogle Scholar
  8. 8.
    Gilon P, Bertrand G, Loubatières-Mariani MM, Remacle C, Henquin JC (1991) The influence of gamma-aminobutyric acid on hormone release by the mouse and rat endocrine pancreas. Endocrinology 129(5):2521–2529PubMedCrossRefGoogle Scholar
  9. 9.
    Bonaventura MM, Catalano PN, Chamson-Reig A, Arany E, Hill D, Bettler B, Saravia F, Libertun C, Lux-Lantos VA (2008) GABAB receptors and glucose homeostasis: evaluation in GABAB receptor knockout mice. Am J Physiol Endocrinol Metab 294(1):E157–E167PubMedCrossRefGoogle Scholar
  10. 10.
    Rorsman P, Berggren PO, Bokvist K, Ericson H, Möhler H, Ostenson CG, Smith PA (1989) Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 341(6239):233–236PubMedCrossRefGoogle Scholar
  11. 11.
    Nonogaki K, Iguchi A, Sakamoto N (1994) Bicuculline methiodide influences the central nervous system to produce hyperglycemia in rats. J Neuroendocrinol 6(4):443–446PubMedCrossRefGoogle Scholar
  12. 12.
    Lam TK, Gutierrez-Juarez R, Pocai A, Rossetti L (2005) Regulation of blood glucose by hypothalamic pyruvate metabolism. Science 309:943–947PubMedCrossRefGoogle Scholar
  13. 13.
    Obici S, Zhang BB, Karkanias G, Rossetti L (2002) Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 8:1376–1382PubMedCrossRefGoogle Scholar
  14. 14.
    Fukushima M, Tokunaga K, Lupien J, Kemnitz JW, Bray GA (1987) Dynamic and static phases of obesity following lesions in PVN and VMH. Am J Physiol 253:R523–R529PubMedGoogle Scholar
  15. 15.
    Berthoud HR, Jeanrenaud B (1979) Acute hyperinsulinemia and its reversal by vagotomy after lesions of the ventromedial hypothalamus in anesthetized rats. Endocrinology 105:146–151PubMedCrossRefGoogle Scholar
  16. 16.
    Minokoshi Y, Okano Y, Shimazu T (1994) Regulatory mechanism of the ventromedial hypothalamus in enhancing glucose uptake in skeletal muscle. Brain Res 649:343–347PubMedCrossRefGoogle Scholar
  17. 17.
    Chan O, Zhu W, Ding Y, McCrimmon RJ, Sherwin RS (2006) Blockade of GABA (A) receptors in the ventromedial hypothalamus further stimulates glucagon and sympathoadrenal but not the hypothalamo-pituitary-adrenal response to hypoglycemia. Diabetes 55(4):1080–1087PubMedCrossRefGoogle Scholar
  18. 18.
    Antony S, Kumar TP, Kuruvilla KP, George N, Paulose CS (2010) Decreased GABA receptor binding in the cerebral cortex of insulin induced hypoglycemic and streptozotocin induced diabetic rats. Neurochem Res 35(10):1516–1521PubMedCrossRefGoogle Scholar
  19. 19.
    Hylden JL, Wilcox GL (1981) Intrathecal substance P elicits a caudally-directed biting and scratching behavior in mice. Brain Res 217:212–215PubMedCrossRefGoogle Scholar
  20. 20.
    Defeudis FV (1981) Central GABA-ergic systems and feeding behavior. Neurochem Int 3(5):273–279PubMedCrossRefGoogle Scholar
  21. 21.
    Kalsbeek A, Foppen E, Schalij I, Van Heijningen C, van der Vliet J, Fliers E, Buijs RM (2008) Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate. PLoS ONE 3(9):e3194PubMedCrossRefGoogle Scholar
  22. 22.
    Kalsbeek A, La Fleur S, Van Heijningen C, Buijs RM (2004) Suprachiasmatic GABAergic inputs to the paraventricular nucleus control plasma glucose concentrations in the rat via sympathetic innervation of the liver. J Neurosci 24(35):7604–7613PubMedCrossRefGoogle Scholar
  23. 23.
    Sherin A, Peeyush KT, Naijil G, Chinthu R, Paulose CS (2010) Hypoglycemia induced behavioural deficit and decreased GABA receptor, CREB expression in the cerebellum of streptozotocin induced diabetic rats. Brain Res Bull 83(6):360–366PubMedCrossRefGoogle Scholar
  24. 24.
    Wang XL, Zhang Q, Zhang YZ, Liu YT, Dong R, Wang QJ, Guo YX (2011) Downregulation of GABAB receptors in the spinal cord dorsal horn in diabetic neuropathy. Neurosci Lett 490(2):112–115PubMedCrossRefGoogle Scholar
  25. 25.
    Morgado C, Pinto-Ribeiro F, Tavares I (2008) Diabetes affects the expression of GABA and potassium chloride cotransporter in the spinal cord: a study in streptozotocin diabetic rats. Neurosci Lett 438(1):102–106PubMedCrossRefGoogle Scholar
  26. 26.
    Cavagnini F, Pinto M, Dubini A, Invitti C, Cappelletti G, Polli EE (1982) Effects of gamma aminobutyric acid (GABA) and muscimol on endocrine pancreatic function in man. Metabolism 31(1):73–77PubMedCrossRefGoogle Scholar
  27. 27.
    Ozawa K, Miura H, Tamagawa T, Hiyoshi Y, Nonogaki K, Maeda N, Watanabe G, Sakamoto N, Iguchi A (1993) Intrahypothalamic, but not hippocampal, administration of muscimol suppresses hyperglycemia induced by hippocampal neostigmine in anesthetized rats. Life Sci 53(25):1903–1909PubMedCrossRefGoogle Scholar
  28. 28.
    Lemus M, Montero S, Cadenas JL, Lara JJ, Tejeda-Chávez HR, Alvarez-Buylla R, de Alvarez-Buylla ER (2008) GabaB receptors activation in the NTS blocks the glycemic responses induced by carotid body receptor stimulation. Auton Neurosci 141(1–2):73–82PubMedCrossRefGoogle Scholar
  29. 29.
    Ulrich D, Bettler B (2007) GABA(B) receptors: synaptic functions and mechanisms of diversity. Curr Opin Neurobiol 17(3):298–303PubMedCrossRefGoogle Scholar
  30. 30.
    Ortega A (2003) A new role for GABA: inhibition of tumor cell migration. Trends Pharmacol Sci 24(4):151–154PubMedCrossRefGoogle Scholar
  31. 31.
    Harrington MA, Oksenberg D, Peroutka SJ (1988) 5-Hydroxytryptamine1A receptors are linked to a Gi-adenylate cyclase complex in rat hippocampus. Eur J Pharmacol 154(1):95–98PubMedCrossRefGoogle Scholar
  32. 32.
    García Hermida O, Fontela T, Ghiglione M, Uttenthal LO (1991) Effect of pertussis pretreatment on plasma glucose and insulin responses to lithium in rats. Br J Pharmacol 103(2):1309–1312PubMedCrossRefGoogle Scholar
  33. 33.
    Toyota T, Kai Y, Kakizaki M, Sakai A, Goto Y, Yajima M, Ui M (1980) Effects of islet-activating protein (IAP) on blood glucose and plasma insulin in healthy volunteers (phase 1 studies). Tohoku J Exp Med 130(2):105–116PubMedCrossRefGoogle Scholar
  34. 34.
    Komatsu M, McDermott AM, Gillison SL, Sharp GW (1995) Time course of action of pertussis toxin to block the inhibition of stimulated insulin release by norepinephrine. Endocrinology 136(5):1857–1863PubMedCrossRefGoogle Scholar
  35. 35.
    Sim YB, Park SH, Kang YJ, Jung JS, Ryu OH, Choi MG, Suh HW (2012) Interleukin-1β (IL-1β) increases pain behavior and the blood glucose level: possible involvement of sympathetic nervous system. Pharmacol Biochem Behav 102(1):170–176PubMedCrossRefGoogle Scholar
  36. 36.
    Sim YB, Park SH, Kang YJ, Jung JS, Ryu OH, Choi MG, Suh HW (2012) Various pain stimulations cause an increase of the blood glucose level. Animal Cells Syst 16(5):385–390CrossRefGoogle Scholar
  37. 37.
    Sim YB, Park SH, Kang YJ, Kim SS, Kim CH, Kim SJ, Jung JS, Ryu OH, Choi MG, Suh HW (2012) Central anti-diabetic action of biguanide and thizolidinediones in d-glucose fed and streptozotocin-treated mouse models. Neurosci Lett 528(1):73–77PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yun-Beom Sim
    • 1
  • Soo-Hyun Park
    • 1
  • Yu-Jung Kang
    • 1
  • Sung-Su Kim
    • 1
  • Chea-Ha Kim
    • 1
  • Su-Jin Kim
    • 1
  • Jun-Sub Jung
    • 1
  • Ohk-Hyun Ryu
    • 2
  • Moon-Gi Choi
    • 2
  • Hong-Won Suh
    • 1
  1. 1.Department of Pharmacology, Institute of Natural MedicineCollege of Medicine Hallym UniversityChuncheonRepublic of Korea
  2. 2.Division of Endocrinology and Metabolism, Department of Internal MedicineCollege of Medicine Hallym UniversityChuncheonRepublic of Korea

Personalised recommendations