Advertisement

Neurochemical Research

, Volume 38, Issue 3, pp 632–643 | Cite as

Effect of Leucine Administration to Female Rats During Pregnancy and Lactation on Oxidative Stress and Enzymes Activities of Phosphoryltransfer Network in Cerebral Cortex and Hippocampus of the Offspring

  • Itiane Diehl de Franceschi
  • Elenara Rieger
  • Alessandra Pinto Vargas
  • Denise Bertin Rojas
  • Aline Guimarães Campos
  • Virginia Cielo Rech
  • Luciane Rosa Feksa
  • Clóvis Milton Duval Wannmacher
Original Paper

Abstract

Maple Syrup Urine Disease is an inborn error of metabolism caused by severe deficiency in the activity of branched-chain α-keto acid dehydrogenase complex. Neurological disorder is common in patients with maple syrup urine disease. Although leucine is considered the main toxic metabolite, the mechanisms underlying the neuropathology of brain injury are poorly understood. In the present study, we evaluated the possible preventive effect of the co-administration of creatine plus pyruvate on the effects elicited by leucine administration to female Wistar rats during pregnancy and lactation on some oxidative stress parameters as well as the activities of some enzymes involved in the phosphoryltransfer network in the brain cortex and hippocampus of the offspring at 21 days of age. Leucine administration induced oxidative stress and altered the activities of pyruvate kinase, adenylate kinase, mitochondrial and cytosolic creatine kinase. Co-administration of creatine plus pyruvate was partially effective in the prevention of some alterations provoked by leucine administration on the oxidative stress but not in the enzymes of phosphoryltransfer network. These results suggest that non-treated maternal hyperleucinemia may be toxic to the brain of the offspring.

Keywords

l-Leucine Maternal hyperleucinemia Oxidative stress Phosphoryltransfer network Creatine Pyruvate 

Notes

Acknowledgments

This work was supported by the research grants from Programa de Núcleos de Excelência (PRONEX), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and FINEP Rede Instituto Brasileiro de Neurociência.

References

  1. 1.
    Chuang DT, Shih VE (2001) Disorders of branched chain amino acid and keto acid etabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, 8th edn. McGraw-Hill, New York, pp 1971–2001Google Scholar
  2. 2.
    Dancis J, Hutzler J, Levitz M (1960) Metabolism of the white blood cells in maple syrup urine disease. Biochim Biophys Acta 43:342–347PubMedCrossRefGoogle Scholar
  3. 3.
    Menkes JH (1959) Maple syrup urine disease: isolation and identification of organic acids in the urine. Pediatrics 23:348–353PubMedGoogle Scholar
  4. 4.
    Strauss KA, Wardley B, Robinson D, Hendrickson C, Ridera NL, Puffenberger EG, Shelmer D, Moserg AB, Morton DH (2010) Classical maple syrup urine disease and brain development: Principles of management and formula design. Mol Genet Metab 99:333–345PubMedCrossRefGoogle Scholar
  5. 5.
    Snyderman SE, Norton PM, Roitman E (1964) Maple syrup urine disease with particular reference to diet therapy. Pediatrics 34:454–472PubMedGoogle Scholar
  6. 6.
    Pilla C, Cardozo RF, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2003) Creatine kinase activity from rat brain is inhibited by branched-chain amino acids in vitro. Neurochem Res 28:675–679PubMedCrossRefGoogle Scholar
  7. 7.
    Pilla C, de Oliveira Cardozo RF, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2003) Effect of leucine administration on creatine kinase activity in rat brain. Metab Brain Dis 18:17–25PubMedCrossRefGoogle Scholar
  8. 8.
    Feksa LR, Cornelio AR, Dutra-Filho CS, Wyse ATS, Wajner M, Wannmacher CMD (2005) The effects of the interactions between amino acids on pyruvate kinase activity from the brain cortex of young rats. Int J Dev Neurosci 23:509–514PubMedCrossRefGoogle Scholar
  9. 9.
    Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Schuck PF, Wajner M (2010) Alpha-ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res 1324:75–84PubMedCrossRefGoogle Scholar
  10. 10.
    Barschak AG, Sitta A, Deon M, Busanello EN, Coelho DM, Cipriani F, Dutra-Filho CS, Giugliani R, Wajner M, Vargas CR (2009) Amino acids levels and lipid peroxidation in maple syrup urine disease patients. Clin Biochem 42:462–466PubMedCrossRefGoogle Scholar
  11. 11.
    Mochel F, Durant B, Meng X, O’Callaghan J, Yu H, Brouillet E, Wheeler VC, Humbert S, Schiffmann R, Durr A (2012) Early alterations of brain cellular energy homeostasis in huntington disease models. J Biol Chem 287:1361–1370PubMedCrossRefGoogle Scholar
  12. 12.
    Beal MF (1995) Aging, energy and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366PubMedCrossRefGoogle Scholar
  13. 13.
    Beal MF (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 23:298–304PubMedCrossRefGoogle Scholar
  14. 14.
    Kessler A, Costabeber E, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2003) Proline reduces creatine kinase activity in the brain cortex of rats. Neurochem Res 28:1175–1180PubMedCrossRefGoogle Scholar
  15. 15.
    Costabeber E, Kessler A, Severo Dutra-Filho C, de Souza Wyse AT, Wajner M, Wannmacher CM (2003) Hyperphenylalaninemia reduces creatine kinase activity in the cerebral cortex of rats. Int J Dev Neurosci 21:111–116PubMedCrossRefGoogle Scholar
  16. 16.
    Feksa LR, Cornelio AR, Vargas CR, de Souza Wyse AT, Dutra-Filho CS, Wajner M, Wannmacher CM (2003) Alanine prevents the inhibition of pyruvate kinase activity caused by tryptophan in cerebral cortex of rats. Metab Brain Dis 18:129–137PubMedCrossRefGoogle Scholar
  17. 17.
    Cornelio AR, Rodrigues V Jr, de Souza Wyse AT, Dutra-Filho CS, Wajner M, Wannmacher CM (2004) Tryptophan reduces creatine kinase activity in the brain cortex of rats. Int J Dev Neurosci 22:95–101PubMedCrossRefGoogle Scholar
  18. 18.
    Rech VC, Feksa LR, Fleck RM, Athaydes GA, Dornelles PK, Rodrigues-Junior V, Wannmacher CM (2008) Cysteamine prevents inhibition of thiol-containing enzymes caused by cystine or cystine dimethylester loading in rat brain cortex. Metab Brain Dis 23:133–145PubMedCrossRefGoogle Scholar
  19. 19.
    de Andrade RB, Gemelli T, Rojas DB, Funchal C, Dutra-Filho CS, Wannmacher CM (2012) Tyrosine impairs enzymes of energy metabolism in cerebral cortex of rats. Mol Cell Biochem 364:253–261PubMedCrossRefGoogle Scholar
  20. 20.
    Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, New YorkGoogle Scholar
  21. 21.
    Dzeja PP, Terzic A (2003) Phosphotransfer networks and cellular energetics. J Exp Biol 206:2039–2047PubMedCrossRefGoogle Scholar
  22. 22.
    Dzeja PP, Zeleznikar RJ, Goldberg ND (1998) Adenylate kinase: kinetic behavior intact cells indicates it is integral to multiple cellular processes. Mol Cell Biochem 184:169–182PubMedCrossRefGoogle Scholar
  23. 23.
    Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40PubMedGoogle Scholar
  24. 24.
    Saks VA, Khuchua ZA, Vasilyeva EV, Belikova O, Kuznetsov AV (1994) Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in vivo regulation of cellular respiration—a synthesis. Mol Cell Biochem 134:155–192CrossRefGoogle Scholar
  25. 25.
    Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716PubMedCrossRefGoogle Scholar
  26. 26.
    Hayashi M, Miyata R, Tanuma N (2012) Oxidative stress in developmental brain disorders. Adv Exp Med Biol 724:278–290PubMedCrossRefGoogle Scholar
  27. 27.
    Reed TT (2011) Lipid peroxidation and neurodegenerative disease. Free Radical Biol Med 51:1302–1319CrossRefGoogle Scholar
  28. 28.
    Mescka C, Moraes T, Rosa A, Mazzola P, Piccoli B, Jacques C, Dalazen G, Coelho J, Cortes M, Terra M, Regla Vargas C, Dutra-Filho CS (2011) In vivo neuroprotective effect of L-carnitine against oxidative stress in maple syrup urine disease. Metab Brain Dis 26:21–28PubMedCrossRefGoogle Scholar
  29. 29.
    Feksa LR, Latini A, Rech VC, Feksa PB, Koch GD, Amaral MF, Leipnitz G, Dutra-Filho CS, Wajner M, Wannmacher CM (2008) Tryptophan administration induces oxidative stress in brain cortex of rats. Metab Brain Dis 23:221–233PubMedCrossRefGoogle Scholar
  30. 30.
    Wajner M, Latini A, Wyse AT, Dutra-Filho CS (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 27:427–448PubMedCrossRefGoogle Scholar
  31. 31.
    Rojas DB, Gemelli T, de Andrade RB, Campos AG, Dutra-Filho CS, Wannmacher CM (2012) Administration of histidine to female rats induces changes in oxidative status in cortex and hippocampus of the offspring. Neurochem Res 37:1031–1036PubMedCrossRefGoogle Scholar
  32. 32.
    Sestili P, Martinelli C, Bravi G, Piccoli G, Curci R, Battistelli M, Falcieri E, Agostini D, Gioacchini AM, Stocchi V (2006) Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med 40:837–849PubMedCrossRefGoogle Scholar
  33. 33.
    Kraemer WJ, Volek JS (1999) Creatine supplementation. Its role in human performance. Clin Sports Med 18:651–666PubMedCrossRefGoogle Scholar
  34. 34.
    Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290:47–52PubMedCrossRefGoogle Scholar
  35. 35.
    Sartini S, Sestili P, Colombo E, Martinelli C, Bartolini F, Ciuffoli S, Lattanzi D, Sisti D, Cuppini R (2012) Creatine affects in vitro electrophysiological maturation of neuroblasts and protects them from oxidative stress. J Neurosci Res 90:435–446PubMedCrossRefGoogle Scholar
  36. 36.
    Ferrante RJ, Andreassen OA, Jenkins BG, Dedeoglu A, Kuemmerle S, Kubilus JK, Kaddurah-Daouk R, Hersch SM, Beal MF (2000) Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci 20:4389–4397PubMedGoogle Scholar
  37. 37.
    Matthews RT, Ferrante RJ, Klivenyi P, Yang L, Klein AM, Mueller G, Kaddurah-Daouk R, Beal MF (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 157:142–149PubMedCrossRefGoogle Scholar
  38. 38.
    Beal M (2011) Neuroprotective effects of creatine. Amino Acids 40:1305–1313PubMedCrossRefGoogle Scholar
  39. 39.
    Ryou MG, Liu R, Ren M, Sun J, Mallet RT, Yang SH (2012) Pyruvate protects the brain against ischemia–reperfusion injury by activating the erythropoietin signaling pathway. Stroke 43:1101–1107PubMedCrossRefGoogle Scholar
  40. 40.
    Ullah N, Naseer MI, Ullah I, Lee HY, Koh PO, Kim MO (2011) Protective effect of pyruvate against ethanol-induced apoptotic neurodegeneration in the developing rat brain. Neuropharmacology 61:1248–1255PubMedCrossRefGoogle Scholar
  41. 41.
    Giandomenico AR, Cerniglia GE, Biaglow JE, Stevens CW, Koch CJ (1997) The importance of sodium pyruvate in assessing damage produced by hydrogen peroxide. Free Radic Biol Med 23:426–434PubMedCrossRefGoogle Scholar
  42. 42.
    Jagtap JC, Chandele A, Chopde BA, Shastry P (2003) Sodium pyruvate protects against H2O2 mediated apoptosis in human neuroblastoma cell line-SK-N-MC. J Chem Neuroanat 26:109–118PubMedCrossRefGoogle Scholar
  43. 43.
    Mazzio E, Soliman KFA (2003) Pyruvic acid cytoprotection against 1-methyl-4-phenylpyridinium, 6-hydroxydopamine and hydrogen peroxide toxicities in vitro. Neurosci Lett 337:77–80PubMedCrossRefGoogle Scholar
  44. 44.
    Berti SL, Nasi GM, Garcia C, Castro FL, Nunes ML, Rojas DB, Moraes TB, Dutra-Filho CS, Wannmacher CM (2012) Pyruvate and creatine prevent oxidative stress and behavioral alterations caused by phenylalanine administration into hippocampus of rats. Metab Brain Dis 27:79–89PubMedCrossRefGoogle Scholar
  45. 45.
    Andrade VS, Rojas DB, Oliveira L, Nunes ML, de Castro FL, Garcia C, Gemelli T, de Andrade RB, Wannmacher CM (2012) Creatine and pyruvate prevent behavioral and oxidative stress alterations caused by hypertryptophanemia in rats. Mol Cell Biochem 362:225–232PubMedCrossRefGoogle Scholar
  46. 46.
    Stöckler S, Holzbach U, Hanenfeld F, Marquardt I, Helms G, Requart M, Hänicke W, Frahm J (1994) Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatric Res 36:409–413CrossRefGoogle Scholar
  47. 47.
    Ryu JK, Choi HB, Mclarnon JB (2006) Combined minocycline plus pyruvate treatment enhances effects of each agent to inhibit inflammation, oxidative damage, and neuronal loss in an excitotoxic animal model of Huntington’s disease. Neurosci 141:1835–1848CrossRefGoogle Scholar
  48. 48.
    LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231PubMedCrossRefGoogle Scholar
  49. 49.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358PubMedCrossRefGoogle Scholar
  50. 50.
    Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50PubMedCrossRefGoogle Scholar
  51. 51.
    Reznick AZ, Packer L (1994) Oxidative damage of proteins: spectrophotometer for carbonyl assay. Methods Enzymol 233:357–363PubMedCrossRefGoogle Scholar
  52. 52.
    Uchida K (2003) Histidine and lysine as targets of oxidative modification. Amino Acids 25:249–257PubMedCrossRefGoogle Scholar
  53. 53.
    Levine RL, Garland D, Oliver CN, Amici I, Climent AG, Lenz BW, Ahn S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478PubMedCrossRefGoogle Scholar
  54. 54.
    Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:41–145CrossRefGoogle Scholar
  55. 55.
    Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352PubMedGoogle Scholar
  56. 56.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126PubMedCrossRefGoogle Scholar
  57. 57.
    Marklund SL (1985) Pyrogallol autoxidation. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC Press Inc., Boca Raton, pp 243–247Google Scholar
  58. 58.
    Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–332PubMedCrossRefGoogle Scholar
  59. 59.
    Hughes BP (1962) A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603PubMedCrossRefGoogle Scholar
  60. 60.
    Leong SF, Lai JCK, Lim L, Clark JB (1981) Energy-metabolising enzymes in brain regions of adult and aging rats. J Neurochem 37:1548–1556PubMedCrossRefGoogle Scholar
  61. 61.
    Dzeja PP, Vitkevicius KT, Redfied MM, Burnett JC, Terzic A (1999) Adenylate kinase-catalyzed phosphotransfer in the myocardium: increased contribution in heart failure. Circ Res 84:1137–1143PubMedCrossRefGoogle Scholar
  62. 62.
    Lowry OH, Rosebrough N, Farr AL, Randal RJ (1951) Protein measurement with a Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  63. 63.
    Skvorak KJ (2009) Animal models of maple syrup urine disease. J Inherit Metab Dis 32:229–246PubMedCrossRefGoogle Scholar
  64. 64.
    Moraes TB, Zanin F, da Rosa A, de Oliveira A, Coelho J, Petrillo F, Wajner M, Dutra-Filho CS (2010) Lipoic acid prevents oxidative stress in vitro and in vivo by an acute hyperphenylalaninemia chemically-induced in rat brain. J Neurol Sci 292:89–95PubMedCrossRefGoogle Scholar
  65. 65.
    Bridi R, Araldi J, Sgarbi MB, Testa CG, Durigon K, Wajner M, Dutra-Filho CS (2003) Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. Int J Devl Neurosci 21:327–332CrossRefGoogle Scholar
  66. 66.
    Bridi R, Braun CA, Zorzi GK, Wannmacher CM, Wajner M, Lissi EG, Dutra-Filho CS (2005) Alpha-keto acids accumulating in maple syrup urine disease stimulate lipid peroxidation and reduce antioxidant defences in cerebral cortex from young rats. Metab Brain Dis 20:155–167PubMedCrossRefGoogle Scholar
  67. 67.
    Mescka C, Moraes T, Rosa A, Mazzola P, Piccoli B, Jacques C, Dalazen G, Coelho J, Cortes M, Terra M, ReglaVargas C, Dutra-Filho CS (2011) In vivo neuroprotective effect of L-carnitine against oxidative stress in maple syrup urine disease. Metab Brain Dis 26:21–28PubMedCrossRefGoogle Scholar
  68. 68.
    Halliwell B, Gutteridge JMC (2007) Measurement of reactive species. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford, pp 268–340Google Scholar
  69. 69.
    Stadtman ER, Levine RL (2003) Free-radical mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218PubMedCrossRefGoogle Scholar
  70. 70.
    Saks V, Dzeja P, Schlattner U, Vendelin M, Terzic A, Wallimann T (2006) Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J Physiol 571:253–273PubMedCrossRefGoogle Scholar
  71. 71.
    Pucar D, Dzeja PP, Bast P, Gumina RJ, Drahl C, Lim L, Juranic N, Macura S, Terzic A (2004) Mapping hypoxia-induced bioenergetic rearrangements and metabolic signaling by 18O-assisted 31PNMR and 1H NMR spectroscopy. Mol Cell Biochem 256–257:281–289PubMedCrossRefGoogle Scholar
  72. 72.
    Alekseev AE, Reyes S, Selivanov VA, Dzeja PP, Terzic A (2012) Compartmentation of membrane processes and nucleotide dynamics in diffusion-restricted cardiac cell microenvironment. J Mol Cell Cardiol 52:401–409PubMedCrossRefGoogle Scholar
  73. 73.
    Dzeja PP, Terzic A (2009) Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci 10:1729–1772PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Itiane Diehl de Franceschi
    • 1
  • Elenara Rieger
    • 1
  • Alessandra Pinto Vargas
    • 1
  • Denise Bertin Rojas
    • 1
  • Aline Guimarães Campos
    • 1
  • Virginia Cielo Rech
    • 2
  • Luciane Rosa Feksa
    • 3
  • Clóvis Milton Duval Wannmacher
    • 1
  1. 1.Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Laboratório de NanociênciasCentro Universitário Franciscano, UNIFRASanta MariaBrazil
  3. 3.Instituto de Ciências da Saúde-ICSUniversidade FeevaleNovo HamburgoBrazil

Personalised recommendations