Skip to main content

Advertisement

Log in

The Molecular Events Involved in Oligodendrocyte Precursor Cell Proliferation Induced by the Conditioned Medium from B104 Neuroblastoma Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The conditioned medium from B104 neuroblastoma cells (B104CM) induces proliferation of oligodendrocyte progenitor cells (OPCs) in vitro. However, the molecular events that occur during B104CM-induced proliferation of OPCs has not been well clarified. In the present study, using OPCs immunopanned from embryonic day 14 Sprague–Dawley rat spinal cords, we explored the activation of several signaling pathways and the expression of several important immediate early genes (IEGs) and cyclins in OPCs in response to B104CM. We found that B104CM can induce OPC proliferation through the activation of the extracellular signal-regulated kinases 1 and 2 (Erk1/2), but not PI3K or p38 MAPK signaling pathways in vitro. The IEGs involved in B104CM-induced OPC proliferation include c-fos, c-jun and Id2, but not c-myc, fyn, or p21. The cyclins D1, D2 and E are also involved in B104CM-stimulated proliferation of OPCs. The activation of Erk results in subsequent expression of IEGs (such as c-fos, c-jun and Id-2) and cyclins (including cyclin D1, D2 and E), which play key roles in cell cycle initiation and OPC proliferation. Collectively, these results suggest that the phosphorylation of Erk1/2 is an important molecular event during OPC proliferation induced by B104CM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927

    PubMed  CAS  Google Scholar 

  2. Lin SC, Bergles DE (2004) Synaptic signaling between neurons and glia. Glia 47:290–298

    Article  PubMed  Google Scholar 

  3. Pringle NP, Yu WP, Guthrie S et al (1996) Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and sonic hedgehog. Dev Biol 177:30–42

    Article  PubMed  CAS  Google Scholar 

  4. Raff MC, Miller RH, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303:390–396

    Article  PubMed  CAS  Google Scholar 

  5. Louis JC, Magal E, Muir D et al (1992) CG-4, a new bipotential glial cell line from rat brain, is capable of differentiating in vitro into either mature oligodendrocytes or type-2 astrocytes. J Neurosci Res 31:193–204

    Article  PubMed  CAS  Google Scholar 

  6. Hu JG, Wu XJ, Feng YF et al (2012) PDGF-AA and bFGF mediate B104CM-induced proliferation of oligodendrocyte precursor cells. Int J Mol Med 30:1113–1118

    PubMed  CAS  Google Scholar 

  7. Blenis J (1993) Signal transduction via the MAP kinases: proceed at your own RSK. Proc Natl Acad Sci USA 90:5889–5892

    Article  PubMed  CAS  Google Scholar 

  8. Blumer KJ, Johnson GL (1994) Diversity in function and regulation of MAP kinase pathways. Trends Biochem Sci 19:236–240

    Article  PubMed  CAS  Google Scholar 

  9. Baron W, Colognato H, ffrench-Constant C (2005) Integrin-growth factor interactions as regulators of oligodendroglial development and function. Glia 49:467–479

    Article  PubMed  Google Scholar 

  10. Monaghan TK, Mackenzie CJ, Plevin R et al (2008) PACAP-38 induces neuronal differentiation of human SH-SY5Y neuroblastoma cells via cAMP-mediated activation of ERK and p38 MAP kinases. J Neurochem 104:74–88

    PubMed  CAS  Google Scholar 

  11. Cobb MH, Goldsmith EJ (1995) How MAP kinases are regulated. J Biol Chem 270:14843–14846

    Article  PubMed  CAS  Google Scholar 

  12. Kim SJ, Cheon SH, Yoo SJ et al (2005) Contribution of the PI3K/Akt/PKB signal pathway to maintenance of self-renewal in human embryonic stem cells. FEBS Lett 579:534–540

    Article  PubMed  CAS  Google Scholar 

  13. Iyer VR, Eisen MB, Ross DT et al (1999) The transcriptional program in the response of human fibroblasts to serum. Science 283:83–87

    Article  PubMed  CAS  Google Scholar 

  14. Galderisi U, Jori FP, Giordano A (2003) Cell cycle regulation and neural differentiation. Oncogene 22:5208–5219

    Article  PubMed  CAS  Google Scholar 

  15. Mayer-Proschel M, Kalyani AJ, Mujtaba T et al (1997) Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron 19:773–785

    Article  PubMed  CAS  Google Scholar 

  16. Mujtaba T, Piper DR, Kalyani A et al (1999) Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells. Dev Biol 214:113–127

    Article  PubMed  CAS  Google Scholar 

  17. Cao Q, Xu XM, Devries WH et al (2005) Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci 25:6947–6957

    Article  PubMed  CAS  Google Scholar 

  18. Hu J, Deng L, Wang X et al (2009) Effects of extracellular matrix molecules on the growth properties of oligodendrocyte progenitor cells in vitro. J Neurosci Res 87:2854–2862

    Article  PubMed  CAS  Google Scholar 

  19. Hu JG, Fu SL, Zhang KH et al (2004) Differential gene expression in neural stem cells and oligodendrocyte precursor cells: a cDNA microarray analysis. J Neurosci Res 78:637–646

    Article  PubMed  CAS  Google Scholar 

  20. Lin CH, Yeh SH, Lin CH et al (2001) A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 31:841–851

    Article  PubMed  CAS  Google Scholar 

  21. Yang F, He X, Feng L et al (2001) PI-3 kinase and IP3 are both necessary and sufficient to mediate NT3-induced synaptic potentiation. Nat Neurosci 4:19–28

    Article  PubMed  CAS  Google Scholar 

  22. Kuruvilla R, Ye H, Ginty DD (2000) Spatially and functionally distinct roles of the PI3-K effector pathway during NGF signaling in sympathetic neurons. Neuron 27:499–512

    Article  PubMed  CAS  Google Scholar 

  23. Sanna PP, Cammalleri M, Berton F et al (2002) Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J Neurosci 22:3359–3365

    PubMed  CAS  Google Scholar 

  24. Opazo P, Watabe AM, Grant SG et al (2003) Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. J Neurosci 23:3679–3688

    PubMed  CAS  Google Scholar 

  25. Niu J, Wang L, Liu S et al (2012) An efficient and economical culture approach for the enrichment of purified oligodendrocyte progenitor cells. J Neurosci Methods 209:241–249

    Article  PubMed  CAS  Google Scholar 

  26. Horiuchi M, Lindsten T, Pleasure D et al (2011) Differing in vitro survival dependency of mouse and rat NG2 + oligodendroglial progenitor cells. J Neurosci Res 88:957–970

    Google Scholar 

  27. Bhat NR, Zhang P (1996) Activation of mitogen-activated protein kinases in oligodendrocytes. J Neurochem 66:1986–1994

    Article  PubMed  CAS  Google Scholar 

  28. Nishida E, Gotoh Y (1993) The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci 18:128–131

    Article  PubMed  CAS  Google Scholar 

  29. Rommel C, Clarke BA, Zimmermann S et al (1999) Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286:1738–1741

    Article  PubMed  CAS  Google Scholar 

  30. Davis S, Bozon B, Laroche S (2003) How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav Brain Res 142:17–30

    Article  PubMed  CAS  Google Scholar 

  31. Norbury C, Nurse P (1992) Animal cell cycles and their control. Annu Rev Biochem 61:441–470

    Article  PubMed  CAS  Google Scholar 

  32. Morgan DO (1992) Cell cycle control in normal and neoplastic cells. Curr Opin Genet Dev 2:33–37

    Article  PubMed  CAS  Google Scholar 

  33. Resnitzky D, Reed SI (1995) Different roles for cyclins D1 and E in regulation of the G1-to-S transition. Mol Cell Biol 15:3463–3469

    PubMed  CAS  Google Scholar 

  34. Koff A, Giordano A, Desai D et al (1992) Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 257:1689–1694

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NO. 81071268; 81171465), the Key Project of Chinese Ministry of Education (NO. 210103).

Conflict of interest

The authors have declared no conflict of interest statement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Zuo Lü.

Additional information

Jian-Guo Hu and Xing-Jun Wu contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, JG., Wu, XJ., Feng, YF. et al. The Molecular Events Involved in Oligodendrocyte Precursor Cell Proliferation Induced by the Conditioned Medium from B104 Neuroblastoma Cells. Neurochem Res 38, 601–609 (2013). https://doi.org/10.1007/s11064-012-0957-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0957-0

Keywords

Navigation