Advertisement

Neurochemical Research

, Volume 38, Issue 2, pp 433–442 | Cite as

Association of SOD2, GPX1, CAT, and TNF Genetic Polymorphisms with Oxidative Stress, Neurochemistry, Psychopathology, and Extrapyramidal Symptoms in Schizophrenia

  • Marija Bošković
  • Tomaž Vovk
  • Marko Saje
  • Katja Goričar
  • Vita Dolžan
  • Blanka Kores Plesničar
  • Iztok Grabnar
Original Paper

Abstract

There is a growing body of evidence confirming the involvement of oxidative stress and inflammation in pathogenesis of schizophrenia. Inter-individual variation in antioxidant capacity caused by different genetic profile could potentially influence patient’s susceptibility to oxidative damage. In this study we evaluated the polymorphisms of manganese superoxide dismutase SOD2Val16Ala, glutathione peroxidase GPX1Pro200Leu, catalase CAT-262C>T and CATc.66+78C>T, and tumour necrosis factor-alpha TNF-308G>A by assessing their association with biomarkers of oxidative stress, neurochemistry, psychopathology of schizophrenia and extrapyramidal symptoms in Caucasian schizophrenia patients treated with haloperidol depot. TNF-308G>A was associated with the increased risk of parkinsonism. No major role of polymorphism of SOD2Val16Ala, CAT-262C>T nor GPX1Pro200Leu in psychopathology of schizophrenia or extrapyramidal symptoms was observed. SOD2Val16Ala polymorphism was associated with dopamine plasma concentration and blood concentration ratio between reduced and oxidised form of glutathione, while GPX1Pro200Leu was related with concentration of reduced glutathione. CATc.66+78C>T was associated with noradrenaline plasma concentration and PANSS negative score. PANSS positive and general scores, were associated with the increased risk of tardive dyskinesia. PANSS positive, negative, and general scores, and GAF score were all associated with the increased risk of akathisia.

Keywords

Schizophrenia Genetic polymorphism Oxidative stress Neurochemistry Psychopathology Extrapyramidal symptoms 

Notes

Acknowledgments

This work was financially supported by the Slovenian Research Agency (ARRS Grants P1-0189 and P1-0170).

References

  1. 1.
    Yao JK, Reddy RD, van Kammen DP (2001) Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications. CNS Drugs 15(4):287–310PubMedCrossRefGoogle Scholar
  2. 2.
    Mahadik SP, Mukherjee S (1996) Free radical pathology and antioxidant defense in schizophrenia: a review. Schizophr Res 19(1):1–17PubMedCrossRefGoogle Scholar
  3. 3.
    Reddy RD, Yao JK (1996) Free radical pathology in schizophrenia: a review. Prostaglandins Leukot Essent Fatty Acids 55(1–2):33–43PubMedCrossRefGoogle Scholar
  4. 4.
    Yao JK, Keshavan MS (2011) Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal 15(7):2011–2035. doi: 10.1089/ars.2010.3603 PubMedCrossRefGoogle Scholar
  5. 5.
    Li XF, Zheng YL, Xiu MH, da Chen C, Kosten TR, Zhang XY (2011) Reduced plasma total antioxidant status in first-episode drug-naive patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 35(4):1064–1067. doi: 10.1016/j.pnpbp.2011.03.001 PubMedCrossRefGoogle Scholar
  6. 6.
    Akyol O, Herken H, Uz E, Fadillioglu E, Unal S, Sogut S, Ozyurt H, Savas HA (2002) The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients. The possible role of oxidant/antioxidant imbalance. Prog Neuropsychopharmacol Biol Psychiatry 26(5):995–1005PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang XY, Tan YL, Cao LY, Wu GY, Xu Q, Shen Y, Zhou DF (2006) Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr Res 81(2–3):291–300. doi: 10.1016/j.schres.2005.10.011 PubMedCrossRefGoogle Scholar
  8. 8.
    Mahadik SP, Evans D, Lal H (2001) Oxidative stress and role of antioxidant and omega-3 essential fatty acid supplementation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 25(3):463–493PubMedCrossRefGoogle Scholar
  9. 9.
    Boskovic M, Vovk T, Kores Plesnicar B, Grabnar I (2011) Oxidative stress in schizophrenia. Curr Neuropharmacol 9(2):301–312. doi: 10.2174/157015911795596595 PubMedCrossRefGoogle Scholar
  10. 10.
    Akyol O, Yanik M, Elyas H, Namli M, Canatan H, Akin H, Yuce H, Yilmaz HR, Tutkun H, Sogut S, Herken H, Ozyurt H, Savas HA, Zoroglu SS (2005) Association between Ala-9Val polymorphism of Mn-SOD gene and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 29(1):123–131. doi: 10.1016/j.pnpbp.2004.10.014 PubMedCrossRefGoogle Scholar
  11. 11.
    Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, Nakagawa-Hattori Y, Shimizu Y, Mizuno Y (1996) Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson’s disease. Biochem Biophys Res Commun 2262:561–565. doi: 10.1006/bbrc.1996.1394 CrossRefGoogle Scholar
  12. 12.
    Sutton A, Khoury H, Prip-Buus C, Cepanec C, Pessayre D, Degoul F (2003) The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics 13(3):145–157. doi: 10.1097/01.fpc.0000054067.64000.8f PubMedCrossRefGoogle Scholar
  13. 13.
    Al Hadithy AF, Ivanova SA, Pechlivanoglou P, Wilffert B, Semke A, Fedorenko O, Kornetova E, Ryadovaya L, Brouwers JR, Loonen AJ (2010) Missense polymorphisms in three oxidative-stress enzymes (GSTP1, SOD2, and GPX1) and dyskinesias in Russian psychiatric inpatients from Siberia. Hum Psychopharmacol 25(1):84–91. doi: 10.1002/hup.1087 PubMedCrossRefGoogle Scholar
  14. 14.
    Galecki P, Pietras T, Szemraj J (2006) Manganese superoxide dismutase gene (MnSOD) polimorphism in schizophrenics with tardive dyskinesia from central Poland. Psychiatr Pol 40(5):937–948PubMedGoogle Scholar
  15. 15.
    Hitzeroth A, Niehaus DJ, Koen L, Botes WC, Deleuze JF, Warnich L (2007) Association between the MnSOD Ala-9Val polymorphism and development of schizophrenia and abnormal involuntary movements in the Xhosa population. Prog Neuropsychopharmacol Biol Psychiatry 31(3):664–672. doi: 10.1016/j.pnpbp.2006.12.019 PubMedCrossRefGoogle Scholar
  16. 16.
    Hori H, Ohmori O, Shinkai T, Kojima H, Okano C, Suzuki T, Nakamura J (2000) Manganese superoxide dismutase gene polymorphism and schizophrenia: relation to tardive dyskinesia. Neuropsychopharmacology 23(2):170–177. doi: 10.1016/S0893-133X(99)00156-6 PubMedCrossRefGoogle Scholar
  17. 17.
    Kang SG, Choi JE, An H, Park YM, Lee HJ, Han C, Kim YK, Kim SH, Cho SN, Joe SH, Jung IK, Kim L, Lee MS (2008) Manganese superoxide dismutase gene Ala-9Val polymorphism might be related to the severity of abnormal involuntary movements in Korean schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 32(8):1844–1847. doi: 10.1016/j.pnpbp.2008.08.013 PubMedCrossRefGoogle Scholar
  18. 18.
    Liu H, Wang C, Chen PH, Zhang BS, Zheng YL, Zhang CX, Meng HQ, Wang Y, da Chen C, Xiu MH, Kosten TR, Zhang XY (2010) Association of the manganese superoxide dismutase gene Ala-9Val polymorphism with clinical phenotypes and tardive dyskinesia in schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 34(4):692–696. doi: 10.1016/j.pnpbp.2010.03.026 PubMedCrossRefGoogle Scholar
  19. 19.
    Pae CU, Kim TS, Patkar AA, Kim JJ, Lee CU, Lee SJ, Jun TY, Lee C, Paik IH (2007) Manganese superoxide dismutase (MnSOD: Ala-9Val) gene polymorphism may not be associated with schizophrenia and tardive dyskinesia. Psychiatry Res 153(1):77–81. doi: 10.1016/j.psychres.2006.04.011 PubMedCrossRefGoogle Scholar
  20. 20.
    Zai CC, Tiwari AK, Basile V, de Luca V, Muller DJ, Voineskos AN, Remington G, Meltzer HY, Lieberman JA, Potkin SG, Kennedy JL (2010) Oxidative stress in tardive dyskinesia: genetic association study and meta-analysis of NADPH quinine oxidoreductase 1 (NQO1) and Superoxide dismutase 2 (SOD2, MnSOD) genes. Prog Neuropsychopharmacol Biol Psychiatry 34(1):50–56. doi: 10.1016/j.pnpbp.2009.09.020 PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang Z, Zhang X, Hou G, Sha W, Reynolds GP (2002) The increased activity of plasma manganese superoxide dismutase in tardive dyskinesia is unrelated to the Ala-9Val polymorphism. J Psychiatr Res 36(5):317–324PubMedCrossRefGoogle Scholar
  22. 22.
    Galecki P, Szemraj J, Zboralski K, Florkowski A, Lewinski A (2009) Relation between functional polymorphism of catalase gene (-262C>T) and recurrent depressive disorder. Neuro Endocrinol Lett 30(3):357–362PubMedGoogle Scholar
  23. 23.
    Forsberg L, Lyrenas L, de Faire U, Morgenstern R (2001) A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Radic Biol Med 30(5):500–505PubMedCrossRefGoogle Scholar
  24. 24.
    Ahn J, Gammon MD, Santella RM, Gaudet MM, Britton JA, Teitelbaum SL, Terry MB, Nowell S, Davis W, Garza C, Neugut AI, Ambrosone CB (2005) Associations between breast cancer risk and the catalase genotype, fruit and vegetable consumption, and supplement use. Am J Epidemiol 162(10):943–952. doi: 10.1093/aje/kwi306 PubMedCrossRefGoogle Scholar
  25. 25.
    Ahn J, Nowell S, McCann SE, Yu J, Carter L, Lang NP, Kadlubar FF, Ratnasinghe LD, Ambrosone CB (2006) Associations between catalase phenotype and genotype: modification by epidemiologic factors. Cancer Epidemiol Biomarkers Prev 15(6):1217–1222. doi: 10.1158/1055-9965.EPI-06-0104 PubMedCrossRefGoogle Scholar
  26. 26.
    Bastaki M, Huen K, Manzanillo P, Chande N, Chen C, Balmes JR, Tager IB, Holland N (2006) Genotype-activity relationship for Mn-superoxide dismutase, glutathione peroxidase 1 and catalase in humans. Pharmacogenet Genomics 16(4):279–286. doi: 10.1097/01.fpc.0000199498.08725.9c PubMedCrossRefGoogle Scholar
  27. 27.
    Chistiakov DA, Savost’anov KV, Turakulov RI, Titovich EV, Zilberman LI, Kuraeva TL, Dedov II, Nosikov VV (2004) A new type 1 diabetes susceptibility locus containing the catalase gene (chromosome 11p13) in a Russian population. Diabetes Metab Res Rev 20(3):219–224. doi: 10.1002/dmrr.442 PubMedCrossRefGoogle Scholar
  28. 28.
    Rajic V, Aplenc R, Debeljak M, Prestor VV, Karas-Kuzelicki N, Mlinaric-Rascan I, Jazbec J (2009) Influence of the polymorphism in candidate genes on late cardiac damage in patients treated due to acute leukemia in childhood. Leuk Lymphoma 50(10):1693–1698. doi: 10.1080/10428190903177212 PubMedCrossRefGoogle Scholar
  29. 29.
    Shinkai T, De Luca V, Zai G, Shaikh S, Matsumoto C, Arnold PD, Hwang R, King N, Trakalo J, Potapova N, Wong G, Hori H, Wong AH, Ohmori O, Nakamura J, Kennedy JL (2004) No association between the Pro197Leu polymorphism in the glutathione peroxidase (GPX1) gene and schizophrenia. Psychiatr Genet 14(3):177–180PubMedCrossRefGoogle Scholar
  30. 30.
    Hu Y, Benya RV, Carroll RE, Diamond AM (2005) Allelic loss of the gene for the GPX1 selenium-containing protein is a common event in cancer. J Nutr 135(12 Suppl):3021S–3024SPubMedGoogle Scholar
  31. 31.
    Hu YJ, Diamond AM (2003) Role of glutathione peroxidase 1 in breast cancer: loss of heterozygosity and allelic differences in the response to selenium. Cancer Res 63(12):3347–3351PubMedGoogle Scholar
  32. 32.
    Jablonska E, Gromadzinska J, Reszka E, Wasowicz W, Sobala W, Szeszenia-Dabrowska N, Boffetta P (2009) Association between GPx1 Pro198Leu polymorphism, GPx1 activity and plasma selenium concentration in humans. Eur J Nutr 48(6):383–386. doi: 10.1007/s00394-009-0023-0 PubMedCrossRefGoogle Scholar
  33. 33.
    Matsuzawa D, Hashimoto K, Hashimoto T, Shimizu E, Watanabe H, Fujita Y, Iyo M (2009) Association study between the genetic polymorphisms of glutathione-related enzymes and schizophrenia in a Japanese population. Am J Med Genet B Neuropsychiatr Genet 150B(1):86–94. doi: 10.1002/ajmg.b.30776 PubMedCrossRefGoogle Scholar
  34. 34.
    Shinkai T, Muller DJ, De Luca V, Shaikh S, Matsumoto C, Hwang R, King N, Trakalo J, Potapova N, Zai G, Hori H, Ohmori O, Meltzer HY, Nakamura J, Kennedy JL (2006) Genetic association analysis of the glutathione peroxidase (GPX1) gene polymorphism (Pro197Leu) with tardive dyskinesia. Psychiatry Res 141(2):123–128. doi: 10.1016/j.psychres.2004.06.023 PubMedCrossRefGoogle Scholar
  35. 35.
    Souza RP, Tampakeras M, Basile V, Shinkai T, Rosa DV, Potkin S, Meltzer HY, Lieberman JA, Romano-Silva MA, Kennedy JL (2009) Lack of association of GPX1 and MnSOD genes with symptom severity and response to clozapine treatment in schizophrenia subjects. Hum Psychopharmacol 24(8):676–679. doi: 10.1002/hup.1076 PubMedCrossRefGoogle Scholar
  36. 36.
    Bishnoi M, Chopra K, Kulkarni SK (2008) Differential striatal levels of TNF-alpha, NFkappaB p65 subunit and dopamine with chronic typical and atypical neuroleptic treatment: role in orofacial dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry 32(6):1473–1478. doi: 10.1016/j.pnpbp.2008.05.003 PubMedCrossRefGoogle Scholar
  37. 37.
    Czerski PM, Rybakowski F, Kapelski P, Rybakowski JK, Dmitrzak-Weglarz M, Leszczynska-Rodziewicz A, Slopien A, Skibinska M, Kaczmarkiewicz-Fass M, Hauser J (2008) Association of tumor necrosis factor -308G/A promoter polymorphism with schizophrenia and bipolar affective disorder in a Polish population. Neuropsychobiology 57(1–2):88–94. doi: 10.1159/000135642 PubMedCrossRefGoogle Scholar
  38. 38.
    Liu L, Jia F, Yuan G, Chen Z, Yao J, Li H, Fang C (2010) Tyrosine hydroxylase, interleukin-1beta and tumor necrosis factor-alpha are overexpressed in peripheral blood mononuclear cells from schizophrenia patients as determined by semi-quantitative analysis. Psychiatry Res 176(1):1–7. doi: 10.1016/j.psychres.2008.10.024 PubMedCrossRefGoogle Scholar
  39. 39.
    O’Brien SM, Scully P, Dinan TG (2008) Increased tumor necrosis factor-alpha concentrations with interleukin-4 concentrations in exacerbations of schizophrenia. Psychiatry Res 160(3):256–262. doi: 10.1016/j.psychres.2007.11.014 PubMedCrossRefGoogle Scholar
  40. 40.
    Munoz-Fernandez MA, Fresno M (1998) The role of tumour necrosis factor, interleukin 6, interferon-gamma and inducible nitric oxide synthase in the development and pathology of the nervous system. Prog Neurobiol 56(3):307–340PubMedCrossRefGoogle Scholar
  41. 41.
    Hajeer AH, Hutchinson IV (2000) TNF-alpha gene polymorphism: clinical and biological implications. Microsc Res Tech 50(3):216–228. doi: 10.1002/1097-0029(20000801)50:3<216:AID-JEMT5>3.0.CO;2-Q PubMedCrossRefGoogle Scholar
  42. 42.
    Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW (1997) Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci USA 94(7):3195–3199PubMedCrossRefGoogle Scholar
  43. 43.
    Naz M, Riaz M, Saleem M (2011) Potential role of Neuregulin 1 and TNF-alpha (-308) polymorphism in schizophrenia patients visiting hospitals in Lahore. Pakistan. Mol Biol Rep 38(7):4709–4714. doi: 10.1007/s11033-010-0606-0 CrossRefGoogle Scholar
  44. 44.
    Sacchetti E, Bocchio-Chiavetto L, Valsecchi P, Scassellati C, Pasqualetti P, Bonvicini C, Corsini P, Rossi G, Cesana BM, Barlati S, Gennarelli M (2007) G308A tumor necrosis factor alpha functional polymorphism and schizophrenia risk: meta-analysis plus association study. Brain Behav Immun 21(4):450–457. doi: 10.1016/j.bbi.2006.11.009 PubMedCrossRefGoogle Scholar
  45. 45.
    Wang F, Fan H, Sun H, Yang F, Luo Y, Liu H, Kosten TR, Lu L, Zhang XY (2012) Association between TNF-alpha promoter -308A/G polymorphism and tardive dyskinesiain Chinese Han patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 37(1):106–110. doi: 10.1016/j.pnpbp.2011.12.007 PubMedCrossRefGoogle Scholar
  46. 46.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126PubMedCrossRefGoogle Scholar
  47. 47.
    Bohanec Grabar P, Logar D, Tomsic M, Rozman B, Dolzan V (2009) Genetic polymorphisms modifying oxidative stress are associated with disease activity in rheumatoid arthritis patients. Dis Markers 26(1):41–48. doi: 10.3233/DMA-2009-0603 PubMedGoogle Scholar
  48. 48.
    Konicki PE, Owen RR, Litman RE, Pickar D (1991) The acute effects of central- and peripheral-acting dopamine antagonists on plasma HVA in schizophrenic patients. Life Sci 48(14):1411–1416PubMedCrossRefGoogle Scholar
  49. 49.
    Breier A, Wolkowitz OM, Roy A, Potter WZ, Pickar D (1990) Plasma norepinephrine in chronic schizophrenia. Am J Psychiatry 147(11):1467–1470PubMedGoogle Scholar
  50. 50.
    Cai HL, Fang PF, Li HD, Zhang XH, Hu L, Yang W, Ye HS (2011) Abnormal plasma monoamine metabolism in schizophrenia and its correlation with clinical responses to risperidone treatment. Psychiatry Res 188(2):197–202. doi: 10.1016/j.psychres.2010.11.003 PubMedCrossRefGoogle Scholar
  51. 51.
    Arvindakshan M, Ghate M, Ranjekar PK, Evans DR, Mahadik SP (2003) Supplementation with a combination of omega-3 fatty acids and antioxidants (vitamins E and C) improves the outcome of schizophrenia. Schizophr Res 62(3):195–204PubMedCrossRefGoogle Scholar
  52. 52.
    Buckman TD, Kling A, Sutphin MS, Steinberg A, Eiduson S (1990) Platelet glutathione peroxidase and monoamine oxidase activity in schizophrenics with CT scan abnormalities: relation to psychosocial variables. Psychiatry Res 31(1):1–14PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang XY, Zhou DF, Cao LY, Zhang PY, Wu GY (2003) Elevated blood superoxide dismutase in neuroleptic-free schizophrenia: association with positive symptoms. Psychiatry Res 117(1):85–88PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang XY, Zhou DF, Cao LY, Chen DC, Zhu FY, Wu GY (2003) Blood superoxide dismutase level in schizophrenic patients with tardive dyskinesia: association with dyskinetic movements. Schizophr Res 62(3):245–250PubMedCrossRefGoogle Scholar
  55. 55.
    Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Brain Res Rev 25(3):335–358PubMedCrossRefGoogle Scholar
  56. 56.
    Gavalas NG, Akhtar S, Gawkrodger DJ, Watson PF, Weetman AP, Kemp EH (2006) Analysis of allelic variants in the catalase gene in patients with the skin depigmenting disorder vitiligo. Biochem Biophys Res Commun 345(4):1586–1591. doi: 10.1016/j.bbrc.2006.05.063 PubMedCrossRefGoogle Scholar
  57. 57.
    Yamamoto K, Hornykiewicz O (2004) Proposal for a noradrenaline hypothesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 28(5):913–922. doi: 10.1016/j.pnpbp.2004.05.033 PubMedCrossRefGoogle Scholar
  58. 58.
    McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45. doi: 10.1186/1742-2094-5-45 PubMedCrossRefGoogle Scholar
  59. 59.
    Wahner AD, Sinsheimer JS, Bronstein JM, Ritz B (2007) Inflammatory cytokine gene polymorphisms and increased risk of Parkinson disease. Arch Neurol 64(6):836–840. doi: 10.1001/archneur.64.6.836 PubMedCrossRefGoogle Scholar
  60. 60.
    Cem Atbasoglu E, Schultz SK, Andreasen NC (2001) The relationship of akathisia with suicidality and depersonalization among patients with schizophrenia. J Neuropsychiatry Clin Neurosci 13(3):336–341PubMedCrossRefGoogle Scholar
  61. 61.
    Chatterjee A, Chakos M, Koreen A, Geisler S, Sheitman B, Woerner M, Kane JM, Alvir J, Lieberman JA (1995) Prevalence and clinical correlates of extrapyramidal signs and spontaneous dyskinesia in never-medicated schizophrenic patients. Am J Psychiatry 152(12):1724–1729PubMedGoogle Scholar
  62. 62.
    Yuen O, Caligiuri MP, Williams R, Dickson RA (1996) Tardive dyskinesia and positive and negative symptoms of schizophrenia. A study using instrumental measures. Br J Psychiatry 168(6):702–708PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang XY, Tan YL, Zhou DF, Cao LY, Wu GY, Haile CN, Kosten TA, Kosten TR (2007) Disrupted antioxidant enzyme activity and elevated lipid peroxidation products in schizophrenic patients with tardive dyskinesia. J Clin Psychiatry 68(5):754–760PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Marija Bošković
    • 1
  • Tomaž Vovk
    • 1
  • Marko Saje
    • 2
  • Katja Goričar
    • 3
  • Vita Dolžan
    • 3
  • Blanka Kores Plesničar
    • 2
  • Iztok Grabnar
    • 1
  1. 1.Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.University Psychiatric Clinic LjubljanaLjubljanaSlovenia
  3. 3.Pharmacogenetics Laboratory, Faculty of Medicine, Institute of BiochemistryUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations