Neurochemical Research

, Volume 38, Issue 6, pp 1196–1207 | Cite as

A Phylogenetic Analysis of the L1 Family of Neural Cell Adhesion Molecules

  • Rula Mualla
  • Kakanahalli Nagaraj
  • Michael Hortsch
Original Paper


L1-type genes form one of several distinct gene families that encode adhesive proteins, which are predominantly expressed in developing and mature metazoan nervous systems. These proteins have a multitude of different important cellular functions in neuronal and glial cells. L1-type gene products are transmembrane proteins with a characteristic extracellular domain structure consisting of six immunoglobulin and three to five fibronectin type III protein folds. As reported here, L1-type proteins can be identified in most metazoan phyla with the notable exception of Porifera (sponges). This puts the origin of L1-type genes at a point in time when primitive cellular neural networks emerged, approximately 1,200 to 1,500 million years ago. Subsequently, several independent gene duplication events generated multiple paralogous L1-type genes in some phyla, allowing for a considerable diversification of L1 structures and the emergence of new functional features and molecular interactions. One such evolutionary newer feature is the appearance of RGD integrin-binding motifs in some vertebrate L1 family members.


Cell adhesion molecules L1-type CAMs Evolution Gene duplication 



This manuscript is dedicated to our friend and colleague Prof. Elisabeth Bock (Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Denmark) to thank her for her continuing contributions to the field of neural cell adhesions molecules and the insights her work has provided to us, how these molecules shape the development and the maintenance of metazoan nervous systems. We would like to also thank Dr. Jianzhi Zhang (Department of Ecology and Evolutionary Biology, University of Michigan) for his advice and support of the project described in this publication.


  1. 1.
    Stewart J (1992) Immunoglobulins did not arise in evolution to fight infection. Immunol Today 13:396–399; discussion 399–400PubMedCrossRefGoogle Scholar
  2. 2.
    Schäcke H, Müller WE, Gamulin V, Rinkevich B (1994) The Ig superfamily includes members from the lowest invertebrates to the highest vertebrates. Immunol Today 15:497–498PubMedCrossRefGoogle Scholar
  3. 3.
    Barclay AN (2003) Membrane proteins with immunoglobulin-like domains—a master superfamily of interaction molecules. Semin Immunol 15:215–223PubMedCrossRefGoogle Scholar
  4. 4.
    Hortsch M (1996) The L1 family of neural cell adhesion molecules: old proteins performing new tricks. Neuron 17:587–593PubMedCrossRefGoogle Scholar
  5. 5.
    Hortsch M (2000) Structural and functional evolution of the L1-family: are four adhesion molecules better than one? Mol Cell Neurosci 15:1–10PubMedCrossRefGoogle Scholar
  6. 6.
    Maness PF, Schachner M (2007) Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10:19–26PubMedCrossRefGoogle Scholar
  7. 7.
    Moos M, Tacke R, Scherer H, Teplow D, Früh K, Schachner M (1988) Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature 334:701–703PubMedCrossRefGoogle Scholar
  8. 8.
    Bieber AJ, Snow PM, Hortsch M, Patel NH, Jacobs JR, Traquina ZR, Schilling J, Goodman CS (1989) Drosophila neuroglian: a member of the immunoglobulin superfamily with extensive homology to the vertebrate neural adhesion molecule L1. Cell 59:447–460PubMedCrossRefGoogle Scholar
  9. 9.
    Huang Y, Jellies J, Johansen KM, Johansen J (1997) Differential glycosylation of tractin and LeechCAM, two novel Ig superfamily members, regulates neurite extension and fascicle formation. J Cell Biol 138:143–157PubMedCrossRefGoogle Scholar
  10. 10.
    Chen L, Ong B, Bennett V (2001) LAD-1, the Caenorhabditis elegans L1CAM homologue, participates in embryonic and gonadal morphogenesis and is a substrate for fibroblast growth factor receptor pathway-dependent phosphotyrosine-based signaling. J Cell Biol 154:841–856PubMedCrossRefGoogle Scholar
  11. 11.
    Wang X, Zhang W, Cheever T, Schwarz V, Opperman K, Hutter H, Koepp D, Chen L (2008) The C. elegans L1CAM homologue LAD-2 functions as a coreceptor in MAB-20/Sema2 mediated axon guidance. J Cell Biol 180:233–246PubMedCrossRefGoogle Scholar
  12. 12.
    Garver TD, Ren Q, Tuvia S, Bennett V (1997) Tyrosine phosphorylation at a site highly conserved in the L1 family of cell adhesion molecules abolishes Ankyrin binding and increases lateral mobility of neurofascin. J Cell Biol 137:703–714PubMedCrossRefGoogle Scholar
  13. 13.
    Kristiansen LV, Hortsch M (2010) Fasciclin II: the NCAM ortholog in Drosophila melanogaster. Adv Exp Med Biol 663:387–401PubMedCrossRefGoogle Scholar
  14. 14.
    Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  15. 15.
    Zhao G, Hortsch M (1998) The analysis of genomic structures in the L1 family of cell adhesion molecules provides no evidence for exon shuffling events after the separation of arthropod and chordate lineages. Gene 215:47–55PubMedCrossRefGoogle Scholar
  16. 16.
    Ren Q, Bennett V (1998) Palmitoylation of neurofascin at a site in the membrane-spanning domain highly conserved among the L1 family of cell adhesion molecules. J Neurochem 70:1839–1849PubMedCrossRefGoogle Scholar
  17. 17.
    Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska M, Darling A, Degnan SM, Oakley TH, Plachetzki DC, Zhai Y, Adamski M, Calcino A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S, Woodcroft BJ, Vervoort M, Kosik KS, Manning G, Degnan BM, Rokhsar DS (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–726PubMedCrossRefGoogle Scholar
  18. 18.
    Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3:e314PubMedCrossRefGoogle Scholar
  19. 19.
    Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutierrez EL, Dubchak I, Garcia-Fernandez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin IT, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071PubMedCrossRefGoogle Scholar
  20. 20.
    Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714PubMedCrossRefGoogle Scholar
  21. 21.
    Christoffels A, Koh EG, Chia JM, Brenner S, Aparicio S, Venkatesh B (2004) Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21:1146–1151PubMedCrossRefGoogle Scholar
  22. 22.
    Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957PubMedCrossRefGoogle Scholar
  23. 23.
    Prince VE, Pickett FB (2002) Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet 3:827–837PubMedCrossRefGoogle Scholar
  24. 24.
    Koticha D, Babiarz J, Kane-Goldsmith N, Jacob J, Raju K, Grumet M (2005) Cell adhesion and neurite outgrowth are promoted by neurofascin NF155 and inhibited by NF186. Mol Cell Neurosci 30:137–148PubMedCrossRefGoogle Scholar
  25. 25.
    Felding-Habermann B, Silletti S, Mei F, Siu CH, Yip PM, Brooks PC, Cheresh DA, O’Toole TE, Ginsberg MH, Montgomery AM (1997) A single immunoglobulin-like domain of the human neural cell adhesion molecule L1 supports adhesion by multiple vascular and platelet integrins. J Cell Biol 139:1567–1581PubMedCrossRefGoogle Scholar
  26. 26.
    Ruppert M, Aigner S, Hubbe M, Yagita H, Altevogt P (1995) The L1 adhesion molecule is a cellular ligand for VLA-5. J Cell Biol 131:1881–1891PubMedCrossRefGoogle Scholar
  27. 27.
    Montgomery AMP, Becker JC, Siu CH, Lemmon VP, Cheresh DA, Pancook JD, Zhao XN, Reisfeld RA (1996) Human neural cell-adhesion molecule L1 and rat homolog NILE are ligands for integrin alpha(V)beta(3). J Cell Biol 132:475–485PubMedCrossRefGoogle Scholar
  28. 28.
    Yip PM, Zhao X, Montgomery AM, Siu CH (1998) The Arg-Gly-Asp motif in the cell adhesion molecule L1 promotes neurite outgrowth via interaction with the alphavbeta3 integrin. Mol Biol Cell 9:277–290PubMedGoogle Scholar
  29. 29.
    Itoh K, Fushiki S, Kamiguchi H, Arnold B, Altevogt P, Lemmon V (2005) Disrupted Schwann cell-axon interactions in peripheral nerves of mice with altered L1-integrin interactions. Mol Cell Neurosci 30:131–136PubMedCrossRefGoogle Scholar
  30. 30.
    Gast D, Riedle S, Kiefel H, Muerkoster SS, Schafer H, Schafer MK, Altevogt P (2008) The RGD integrin binding site in human L1-CAM is important for nuclear signaling. Exp Cell Res 314:2411–2418PubMedCrossRefGoogle Scholar
  31. 31.
    Müller CI, Blumbach B, Krasko A, Schröder HC (2001) Receptor protein-tyrosine phosphatases: origin of domains (catalytic domain, Ig-related domain, fibronectin type III module) based on the sequence of the sponge Geodia cydonium. Gene 262:221–230PubMedCrossRefGoogle Scholar
  32. 32.
    Wang DY, Kumar S, Hedges SB (1999) Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc R Soc Lond B Biol Sci 266:163–171CrossRefGoogle Scholar
  33. 33.
    Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155PubMedCrossRefGoogle Scholar
  34. 34.
    Kappen C, Schughart K, Ruddle FH (1989) Two steps in the evolution of Antennapedia-class vertebrate homeobox genes. Proc Natl Acad Sci USA 86:5459–5463PubMedCrossRefGoogle Scholar
  35. 35.
    Schughart K, Kappen C, Ruddle FH (1989) Duplication of large genomic regions during the evolution of vertebrate homeobox genes. Proc Natl Acad Sci USA 86:7067–7071PubMedCrossRefGoogle Scholar
  36. 36.
    Hassel B, Rathjen FG, Volkmer H (1997) Organization of the neurofascin gene and analysis of developmentally regulated alternative splicing. J Biol Chem 272:28742–28749PubMedCrossRefGoogle Scholar
  37. 37.
    Volkmer H, Hassel B, Wolff JM, Frank R, Rathjen FG (1992) Structure of the axonal surface recognition molecule neurofascin and its relationship to a neural subgroup of the immunoglobulin superfamily. J Cell Biol 118:149–161PubMedCrossRefGoogle Scholar
  38. 38.
    Takeda Y, Asou H, Murakami Y, Miura M, Kobayashi M, Uyemura K (1996) A nonneuronal isoform of cell adhesion molecule L1: tissue-specific expression and functional analysis. J Neurochem 66:2338–2349PubMedCrossRefGoogle Scholar
  39. 39.
    De Angelis E, Brümmendorf T, Cheng L, Lemmon V, Kenwrick S (2001) Alternative use of a mini exon of the L1 gene affects L1 binding to neural ligands. J Biol Chem 276:32738–32742PubMedCrossRefGoogle Scholar
  40. 40.
    Kadmon G, Altevogt P (1997) The cell adhesion molecule L1: species- and cell-type-dependent multiple binding mechanisms. Differentiation 61:143–150PubMedCrossRefGoogle Scholar
  41. 41.
    Hynes RO, Zhao Q (2000) The evolution of cell adhesion. J Cell Biol 150:F89–F96PubMedCrossRefGoogle Scholar
  42. 42.
    Blair JE, Hedges SB (2005) Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol 22:2275–2284PubMedCrossRefGoogle Scholar
  43. 43.
    Ebeling O, Duczmal A, Aigner S, Geiger C, Schöllhammer S, Kemshead JT, Möller P, Schwartz-Albiez R, Altevogt P (1996) L1 adhesion molecule on human lymphocytes and monocytes: expression and involvement in binding to alpha v beta 3 integrin. Eur J Immunol 26:2508–2516PubMedCrossRefGoogle Scholar
  44. 44.
    Murphy WJ, Pevzner PA, O’Brien SJ (2004) Mammalian phylogenomics comes of age. Trends Genet 20:631–639PubMedCrossRefGoogle Scholar
  45. 45.
    Duczmal A, Schollhammer S, Katich S, Ebeling O, Schwartz-Albiez R, Altevogt P (1997) The L1 adhesion molecule supports alpha v beta 3-mediated migration of human tumor cells and activated T lymphocytes. Biochem Biophys Res Commun 232:236–239PubMedCrossRefGoogle Scholar
  46. 46.
    Voura EB, Ramjeesingh RA, Montgomery AM, Siu CH (2001) Involvement of integrin alpha(v)beta(3) and cell adhesion molecule L1 in transendothelial migration of melanoma cells. Mol Biol Cell 12:2699–2710PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Rula Mualla
    • 1
  • Kakanahalli Nagaraj
    • 2
  • Michael Hortsch
    • 1
  1. 1.Department of Cell and Developmental BiologyUniversity of MichiganAnn ArborUSA
  2. 2.Department of Applied ZoologyKuvempu UniversityShimogaIndia

Personalised recommendations