Neurochemical Research

, Volume 38, Issue 1, pp 23–31 | Cite as

Endogenous Content and Release of [3H]-GABA and [3H]-Glutamate in the Spinal Cord of Chronically Undernourished Rat

  • Salvador Quiróz-González
  • Rodrigo Erick Escartín-Pérez
  • Francisco Paz-Bermudez
  • Bertha Segura-Alegría
  • Celia Reyes-Legorreta
  • José Carlos Guadarrama-Olmos
  • Benjamin Florán-Garduño
  • Ismael Jiménez-Estrada
Original Paper


The aim of this study was to determine the effect of chronic undernutrition on the content and release of γ-amino butyric acid (GABA) and glutamate (GLU) transmitters in the rat spinal cord. The release of [3H]-GABA and [3H]-GLU was determined by radioactive liquid scintillation techniques, and the concentrations of GABA and GLU in spinal cord preparations from control and undernourished young rats (50–60 days old) were measured by reverse-phase HPLC. The GABA and GLU contents in the lumbar spinal dorsal horn (L6 segment) were significantly lower in undernourished rats relative to control rats (22.2 ± 3.7 and 10.7 ± 1.9 %, respectively; P < 0.05). Spinal cord blocks from undernourished animals also showed lower rates of [3H]-GABA and [3H]-GLU release than controls (27.6 ± 3.5 and 12.8 ± 2.5 %, respectively; P < 0.01). We propose that the decreases in GLU content and release are consistent with a reduced activation of either afferent fibers, spinal glutaminergic neurons, or both. Furthermore, we propose that the decreased content and release of GABA in undernourished animals are related to a depression in pre- and post-synaptic inhibition. In addition, we hypothesize that the reductions in GABA content and release serve as compensatory mechanisms to counterbalance decreases in sensory transmission and GLU content in the spinal cord of the chronically undernourished rat.


Neurotransmitters Spinal cord Undernutrition GABA Glutamate 



This work was supported by fellowships granted to I. Jiménez-Estrada and B. Florán Garduño by the Sistema Nacional de Investigadores and to Salvador Quiroz by the Consejo Nacional de Ciencia y Tecnología (203774) México.

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    Rudomin P, Schmidt R (1999) Presynaptic inhibition in the vertebrate spinal cord revisited. Exp Brain Res 129:1–37PubMedCrossRefGoogle Scholar
  2. 2.
    Morgane PJ, Miller M, Kemper T, Stein W, Forbes W et al (1978) The effects of protein malnutrition on the developing central nervous system in the rat. Neurosci Biobehav Rev 2:137–230CrossRefGoogle Scholar
  3. 3.
    Morgane PJ, Austin-LaFrance R, Bronzino J, Tonkiss J, Diaz-Cintra S et al (1993) Prenatal malnutrition and the development of the brain. Neurosc Biobehav Rev 17:91–128CrossRefGoogle Scholar
  4. 4.
    Andrade JP, Paula-Barbosa MM (1996) Protein malnutrition alters the cholinergic and GABAergic systems of the hippocampal formation of the adult rat: an immunocytochemical study. Neurosci Lett 211:211–215PubMedCrossRefGoogle Scholar
  5. 5.
    Rotta LN, Leszczinski DN, Brusque AM, Pereira P, Brum LF et al (2008) Effects of undernutrition on glutamatergic parameters in the cerebral cortex of young rats. Physiology Behavior 94:580–585PubMedCrossRefGoogle Scholar
  6. 6.
    Rotta LN, Schmidt AP, Mello e Souza T, Nogueira CW, Souza KB et al (2003) Effects of undernutrition on glutamatergic parameters in rat brain. Neurochemical Res 28:1181–1186CrossRefGoogle Scholar
  7. 7.
    Kalyanasundaram S, Ramanamurthy PSV (1982) Free amino acid levels in undernourished developing rat brain. Neurochemical Res 7:469–476CrossRefGoogle Scholar
  8. 8.
    Reddy BS, Pleasants JR, Wostmann BS (1971) Effect of protein calorie restriction on brain amino acid pool in neonatal rat. Proc Soc Exper Biol Med 136:949–953Google Scholar
  9. 9.
    Del Angel-Meza AR, Ramírez-Cortes L, Adame-González IG, González BI, Beas-Zárate C (2002) Cerebral GABA release and GAD activity in protein-and tryptophan-restricted rats during development. Int J Dev Neurosci 20:47–54PubMedCrossRefGoogle Scholar
  10. 10.
    Schweigert ID, de Oliveira DL, Scheibel F, da Costa F, Wofchuk ST et al (2005) Gestational and postnatal malnutrition affects sensitivity of young rats to picrotoxin and quinolinic acid and uptake of GABA by cortical and hipocampal slices. Dev Brain Res 154:177–185CrossRefGoogle Scholar
  11. 11.
    Díaz-Cintra S, González-Maciel A, Morales MA, Aguilar A, Cintra L et al (2007) Protein malnutrition differentially alters the number of glutamic acid decarboxylase-67 interneurons in dentate gyrus and CA1–3 subfields of the dorsal hippocampus. Exp Neurol 208:47–53PubMedCrossRefGoogle Scholar
  12. 12.
    Quiróz-González S, Segura Alegría B, Guadarrama Olmos JC, Jiménez-Estrada I (2011) Effect of chronic undernourishment on the cord dorsum potentials and the primary afferent depolarization evoked by cutaneous nerves in the rat spinal cord. Brain Res Bull 85:68–74Google Scholar
  13. 13.
    Segura B, Guadarrama JC, Gutierrez AL, Merchant H, Cintra L, Jiménez I (2001) Effect of perinatal food deficiencies on the compound action potential evoked in sensory nerves of developing rats. Nutr Neurosci 4:475–488PubMedGoogle Scholar
  14. 14.
    Bedi KS (1994) Undernutrition of rats during early life does not affect the total number of cortical neurons. J Comp Neurol 342:596–602PubMedCrossRefGoogle Scholar
  15. 15.
    Chow BF, Lee CJ (1964) Effects of dietary restriction of pregnant rats on body weight gain of the offspring. J Nutr 82:10–18PubMedGoogle Scholar
  16. 16.
    Segura B, Guadarrama JC, Pratz G, Mercado V, Merchant H et al (2004) Conduction failure of action potentials in sensory sural nerves of undernourished rats. Neurosci Lett 354:181–184PubMedCrossRefGoogle Scholar
  17. 17.
    Engelbret ML, Van Weissenbruch MM, Popp-Snijders C, Lips P, De Lemarre-Van de Waal HA (2001) Body mass index, body composition, and leptin at onset of puberty in male and female rats after intrauterine growth retardation and after early postnatal food restriction. Pediatr Res 50:474–478Google Scholar
  18. 18.
    Wieser W (1984) A distinction must be made between the ontogeny and phylogeny of metabolism in order to understand the mass exponent of energy metabolism. Respir Physiol 55:1–9PubMedCrossRefGoogle Scholar
  19. 19.
    Floran B, Floran L, Erlij D, Aceves J (2004) Activation of dopamine D4 receptors modulates GABA release in slices of the rat thalamic reticular nucleus. Neuropharmacology 46:497–503PubMedCrossRefGoogle Scholar
  20. 20.
    Cortés H, Paz F, Erlij D, Aceves J, Florán B (2010) GABAB receptors modulate depolarization-stimulated [H3]glutamate release in slices of the pars reticulata of the rat substantia nigra. Eur J Pharmacol 649:161–167Google Scholar
  21. 21.
    Kofalvi A, Rodrigues RJ, Ledent C, Mackie K, Vizi ES et al (2005) Involvement of cannabinoid receptors in the regulation of neurotransmitter release in the rodent striatum: a combined immunochemical and pharmacological analysis. J Neurosci 25:2874–2884PubMedCrossRefGoogle Scholar
  22. 22.
    Kawahara K, Hosoya R, Sato H, Tanaka M, Nakajima T et al (2002) Selective blockade of astrocytic glutamate transporter GLT-1 with dihydrokainate prevents neuronal death during ouabain treatment of astrocyte/neuron cocultures. Glia 40:337–349PubMedCrossRefGoogle Scholar
  23. 23.
    Bernardinelli Y, Chatton JY (2008) Differential effects of glutamate transporter inhibitors on the global electrophysiological response of astrocytes to neuronal stimulation. Brain Res 1240:47–53PubMedCrossRefGoogle Scholar
  24. 24.
    Sellström A, Hamberger A (1977) Potassium-stimulated γ-aminobutyric acid release from neurons and glia. Brain Res 119:189–198PubMedCrossRefGoogle Scholar
  25. 25.
    Bernath S (1992) Calcium-independent release of amino acid neurotransmitters: fact or artifact? Prog Neurobiol 38:57–91PubMedCrossRefGoogle Scholar
  26. 26.
    Szatkowski M, Barbour B, Attwell D (1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348:443–446PubMedCrossRefGoogle Scholar
  27. 27.
    Millan MJ (2002) Descending control of the pain. Prog Neurobiol 66:355–474PubMedCrossRefGoogle Scholar
  28. 28.
    Maxwell L, Maxwell DJ, Neilson M, Kerr R (1996) A confocal microscopic survey of serotoninergic axons in the lumbar spinal cord of the rat: co-localization with glutamate decarboxylase and neuropeptides. Neuroscience 75:471–480PubMedCrossRefGoogle Scholar
  29. 29.
    Iijima K, Sato M, Kojima N, Ohtomo K (1992) Immunocytochemical and in situ hybridization evidence for the coexistence of GABA and tyrosine hydroxylase in the rat locus coeruleus. Anat Rec 234:593–604PubMedCrossRefGoogle Scholar
  30. 30.
    Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57:1–164PubMedCrossRefGoogle Scholar
  31. 31.
    Tao YX, Gu J, Stephens RL Jr (2005) Role of spinal cord glutamate transporter during normal sensory transmission and pathological pain states. Mol Pain 1:30PubMedCrossRefGoogle Scholar
  32. 32.
    Nicholas AP, Pieribone VA, Arvidsson U, Hökfelt T (1992) Serotonin-, substance P- and glutamate/aspartate-immunoreactivities in medullo-spinal pathways in rat and primate. Neuroscience 48:545–559PubMedCrossRefGoogle Scholar
  33. 33.
    Wu W, Elde R, Wessendorf MW (1993) Organization of the serotonergic innervation of spinal neurons in rats. Part III. Differential serotonergic innervation of somatic and parasympathetic preganglionic motoneurons as determined by patterns of co-existing peptides. Neuroscience 55:223–233PubMedCrossRefGoogle Scholar
  34. 34.
    Barber RP, Vaughn JE, Roberts E (1982) The cytoarchitecture of GABAergic neurons in rat spinal cord. Brain Res 238:305–328PubMedCrossRefGoogle Scholar
  35. 35.
    Levy AR (1977) The role of GABA in primary afferent depolarization. Prog Neurobiol 9:211–267PubMedCrossRefGoogle Scholar
  36. 36.
    Malcangio M, Bowery NG (1996) GABA and its receptor in the spinal cord. Trens Pharmacol Sci 17:457–462CrossRefGoogle Scholar
  37. 37.
    Rudomin P, Jiménez I, Quevedo J (1998) Selectivity of the presynaptic control of synaptic effectiveness of group I afferents in the mammalian spinal cord. In: Rudomin P, Romo R, Mendell L (eds) Presynaptic inhibition and neural control. Oxford, New York, pp 282–302Google Scholar
  38. 38.
    Mayer BL, Westbrook GL (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28:197–276PubMedCrossRefGoogle Scholar
  39. 39.
    Basbaum AI, Woolf CJ (1999) Pain. Curr Biol 9:R429–R431Google Scholar
  40. 40.
    Bernhard CG (1953) The spinal cord potentials in leads form the cord dorsum in relation to peripheral source of afferent stimulation. Acta Physiol Scand 29(Suppl 106):1–29Google Scholar
  41. 41.
    Coombs JS, Curtis DR, Landgren S (1956) Spinal cord potentials generated by impulses in muscle and cutaneous afferent fibers. J Neurophysiol 19:452–467PubMedGoogle Scholar
  42. 42.
    Willis WD, Weir MA, Skinner RD, Bryan RN (1973) Differential distribution of spinal cord field potentials. Exp Brain Res 17:169–176PubMedCrossRefGoogle Scholar
  43. 43.
    Meyer R, Ringkamp M, Campbell J, Raja S (2006) Peripheral mechanisms of cutaneous nociception. In: McMahon SB, Koltzenburg M (eds) Textbook of pain. Churchill Livingstone, Elsevier, pp 3–34Google Scholar
  44. 44.
    Swaiman KF, Daleiden JM, Wolfe RN (1970) The effect of food deprivation on enzyme activity in developing brain. J Neurochem 17:1387–1391PubMedCrossRefGoogle Scholar
  45. 45.
    Adlard BPF, Dobbing J (1972) Vulnerability of developing brain. Br J Nutr 28:139SCrossRefGoogle Scholar
  46. 46.
    Rajalakshmi R, Parameswaran M, Telang SD, Ramakrishnan CV (1974) Effects of undernutrition and protein deficiency on glutamate dehydrogenase and decarboxylase in rat brain. J Neurochem 23:129–133PubMedCrossRefGoogle Scholar
  47. 47.
    Morgane PJ, Austin-LaFrance RJ, Bronzino J, Tonkiss J, Galler JR (1992) Malnutrition and the developing central nervous system. In: Issacson RL, Jensen KF (eds) The Vulnerable brain and environmental risk. Vol 1. Malnutrition and hazard assessment. Plenum Press, New York, pp 3–44Google Scholar
  48. 48.
    Lin Q, Peng YB, Willis WD (1996) Inhibition of primate spinothalamic tract neurons by spinal glycine and GABA is reduced during central sensitization. J Neurophysiol 76:1005–1014PubMedGoogle Scholar
  49. 49.
    Zeilhofer HU (2008) Loss of glycinergic and GABAergic inhibition in chronic pain contributions of inflammation and microglia. Int Immunopharmacol 8:182–187PubMedCrossRefGoogle Scholar
  50. 50.
    Smart JL, Whatson TS, Dobbing J (1975) Thresholds of responses to electrical shock in previously undernourishment rats. Br J Nutr 34:511–516PubMedGoogle Scholar
  51. 51.
    Rocinholi LF, Almeida SS, De-Oliveira LM (1997) Response threshold to aversive stimuli in stimulated early protein-malnourished rats. Braz J Med Biol Res 30:407–413PubMedCrossRefGoogle Scholar
  52. 52.
    Wall PD (1995) Do nerve impulses penetrate terminal arborizations—a pre-presynaptic control mechanism. Trends Neurosci 18:99–103PubMedCrossRefGoogle Scholar
  53. 53.
    Wall PD, Lidierth M, Hillman P (1999) Brief and prolonged effects of Lissauer tract stimulation on dorsal horn cells. Pain 83:579–589PubMedCrossRefGoogle Scholar
  54. 54.
    Jänig W, Schmidt RF, Zimmermann M (1967) Presynaptic depolarization during activation of tonic mechanoreceptors. Brain Res 5:514–516PubMedCrossRefGoogle Scholar
  55. 55.
    Jänig W, Schmidt RF, Zimmermann M (1968) Single unit responses and the total afferent outflow from the cat’s food pad upon mechanical stimulation. Exp Brain Res 6:100–115PubMedGoogle Scholar
  56. 56.
    Jänig W, Schmidt RF, Zimmermann M (1968) Two specific feedback pathways to the central afferent terminal of phasic and tonic mechanoreceptors. Exp Brain Res 6:116–129PubMedGoogle Scholar
  57. 57.
    Cote MP, Gossard JP (2003) Task-dependent presynaptic inhibition. J Neurosci 23:1886–1893PubMedGoogle Scholar
  58. 58.
    Seki K, Perlmutter SI, Fetz EE (2003) Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nat Neurosci 6:1309–1316PubMedCrossRefGoogle Scholar
  59. 59.
    Menard A, Leblond H, Gossard JP (2002) Sensory integration in presynaptic inhibitory pathways during fictive locomotion in the cat. J Neurophysiol 88:163–171PubMedGoogle Scholar
  60. 60.
    Fernández RG, Leehan JA, Pastrana RF, Muñiz RO (2005) Effect of malnutrition on K+ current in T lymphocytes. Clin Diagn Lab Immunol 12(7):808–813PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Salvador Quiróz-González
    • 1
  • Rodrigo Erick Escartín-Pérez
    • 3
  • Francisco Paz-Bermudez
    • 1
  • Bertha Segura-Alegría
    • 2
  • Celia Reyes-Legorreta
    • 4
  • José Carlos Guadarrama-Olmos
    • 1
  • Benjamin Florán-Garduño
    • 1
  • Ismael Jiménez-Estrada
    • 1
  1. 1.Departamento de Fisiología, Biofísica y NeurocienciasCentro de Investigación y Estudios Avanzados del IPNMexicoMexico
  2. 2.Facultad de Estudios Superiores, FES IztacalaUNAMMexicoMexico
  3. 3.Laboratorio de Neurobiología de la Alimentación, FES IztacalaUNAMMexicoMexico
  4. 4.Instituto Nacional de RehabilitaciónSSAMexicoMexico

Personalised recommendations