Neurochemical Research

, Volume 37, Issue 10, pp 2190–2197 | Cite as

Leuprolide Acetate, a GnRH Agonist, Improves Experimental Autoimmune Encephalomyelitis: A Possible Therapy for Multiple Sclerosis

  • Irene Guzmán-Soto
  • Eva Salinas
  • Irma Hernández-Jasso
  • J. Luis Quintanar
Original Paper


Gonadotrophin-releasing hormone (GnRH), a well known hypothalamic neuropeptide, has been reported to possess neurotrophic properties. Leuprolide acetate, a synthetic analogue of GnRH is considered to be a very safe and tolerable drug and it has been used for diverse clinical applications, including the treatment of prostate cancer, endometriosis, uterine fibroids, central precocious puberty and in vitro fertilization techniques. The present study was designed to determine whether Leuprolide acetate administration, exerts neurotrophic effects on clinical signs, body weight gain, neurofilaments (NFs) and myelin basic protein (MBP) expression, axonal morphometry and cell infiltration in spinal cord of experimental autoimmune encephalomyelitis (EAE) rats. In this work, we have found that Leuprolide acetate treatment decreases the severity of clinical signs of locomotion, induces a significantly greater body weight gain, increases the MBP and NFs expression, axonal area and cell infiltration in EAE animals. These results suggest the use of this agonist as a potential therapeutic approach for multiple sclerosis.


Body weight Neurofilaments Neurotrophic factors Myelin Neuro-regenerative Axon 



We would like to express our sincere gratitude to Dr. Kalman Kovacs for reviewing the manuscript and to Dr. Andrés Quintanar-Stephano and Lic. Denisse Calderón Vallejo for the methodological support. We thank to the Consejo Nacional de Ciencia y Tecnología (CONACyT) for scholarship 266788.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747PubMedCrossRefGoogle Scholar
  2. 2.
    O’Connor KC, Chitnis T, Griffin DE, Piyasirisilp S, Bar-Or A, Khoury S, Wucherpfennig KW, Hafler DA (2003) Myelin basic protein-reactive autoantibodies in the serum and cerebrospinal fluid of multiple sclerosis patients are characterized by low-affinity interactions. J Neuroimmunol 136:140–148PubMedCrossRefGoogle Scholar
  3. 3.
    Sun D, Newman TA, Perry VH, Weller RO (2004) Cytokine-induced enhancement of autoimmune inflammation in the brain and spinal cord: implications for multiple sclerosis. Neuropathol Appl Neurobiol 30:374–384PubMedCrossRefGoogle Scholar
  4. 4.
    Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9:393–407PubMedCrossRefGoogle Scholar
  5. 5.
    Fugger L, Friese MA, Bell JI (2009) From genes to function: the next challenge to understanding multiple sclerosis. Nat Rev Immunol 9:408–417PubMedCrossRefGoogle Scholar
  6. 6.
    Baxter AG (2007) The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 7:904–912PubMedCrossRefGoogle Scholar
  7. 7.
    Sullivan AM, Toulouse A (2011) Neurotrophic factors for the treatment of Parkinson’s disease. Cytokine Growth Factor Rev 22:157–165PubMedCrossRefGoogle Scholar
  8. 8.
    Thoenen H (1995) Neurotrophins and neuronal plasticity. Science 270:593–598PubMedCrossRefGoogle Scholar
  9. 9.
    Barde YA (1997) Help from within for damaged axons. Nature 385:391–393PubMedCrossRefGoogle Scholar
  10. 10.
    Moalem G, Gdalyahu A, Shani Y, Otten U, Lazarovici P, Cohen IR, Schwartz M (2000) Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun 15:331–345PubMedCrossRefGoogle Scholar
  11. 11.
    Makar TK, Trisler D, Sura KT, Sultana S, Patel N, Bever CT (2008) Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis. J Neurol Sci 270:70–76PubMedCrossRefGoogle Scholar
  12. 12.
    Arnon R, Aharoni R (2009) Neuroprotection and neurogeneration in MS and its animal model EAE effected by glatiramer acetate. J Neural Transm 116:1443–1449PubMedCrossRefGoogle Scholar
  13. 13.
    Lu Z, Hu X, Zhu C, Wang D, Zheng X, Liu Q (2009) Overexpression of CNTF in mesenchymal stem cells reduces demyelination and induces clinical recovery in experimental autoimmune encephalomyelitis mice. J Neuroimmunol 206:58–69PubMedCrossRefGoogle Scholar
  14. 14.
    Prange-Kiel J, Jarry H, Schoen M, Kohlmann P, Lohse C, Zhou L, Rune GM (2008) Gonadotropin-releasing hormone regulates spine density via its regulatory role in hippocampal estrogen synthesis. J Cell Biol 180:417–426PubMedCrossRefGoogle Scholar
  15. 15.
    Quintanar JL, Salinas E (2008) Neurotrophic effects of GnRH on neurite outgrowth and neurofilament protein expression in cultured cerebral cortical neurons of rat embryos. Neurochem Res 33:1051–1056PubMedCrossRefGoogle Scholar
  16. 16.
    Liu Q, Xie F, Alvarado-Diaz A, Smith MA, Moreira PI, Zhu X, Perry G (2011) Neurofilamentopathy in neurodegenerative diseases. Open Neurol J 5:58–62PubMedCrossRefGoogle Scholar
  17. 17.
    Perrot R, Berges R, Bocquet A, Eyer J (2008) Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol 38:27–65PubMedCrossRefGoogle Scholar
  18. 18.
    Quintanar JL, Salinas E, González R (2009) Gonadotropin-releasing hormone receptor in spinal cord neurons of embryos and adult rats. Neurosci Lett 461:21–24PubMedCrossRefGoogle Scholar
  19. 19.
    Quintanar JL, Salinas E, Quintanar-Stephano A (2011) Gonadotropin-releasing hormone reduces the severity of experimental autoimmune encephalomyelitis, a model of multiple sclerosis. Neuropeptides 45:43–48PubMedCrossRefGoogle Scholar
  20. 20.
    Wilson AC, Meethal SV, Bowen RL, Atwood CS (2007) Leuprolide acetate: a drug of diverse clinical applications. Expert Opin Investig Drugs 16:1851–1863PubMedCrossRefGoogle Scholar
  21. 21.
    Fujino M, Fukuda T, Shinagawa S, Kobayashi S, Yamazaki I (1974) Synthetic analogs of luteinizing hormone releasing hormone (LH-RH) substituted in position 6 and 10. Biochem Biophys Res Commun 60:406–413PubMedCrossRefGoogle Scholar
  22. 22.
    Abouelfadel Z, Crawford ED (2008) Leuprorelin depot injection: patient considerations in the management of prostatic cancer. Ther Clin Risk Manag 4:513–526PubMedGoogle Scholar
  23. 23.
    Wise PM (2002) Estrogens and neuroprotection. Trends Endocrinol Metab 13:229–230PubMedCrossRefGoogle Scholar
  24. 24.
    Vadakkadath Meethal SV, Atwood CS (2005) The role of hypothalamic-pituitary-gonadal hormones in the normal structure and functioning of the brain. Cell Mol Life Sci 62:257–270PubMedCrossRefGoogle Scholar
  25. 25.
    Quintanar-Stephano A, Chavira-Ramírez R, Kovacs K, Berczi I (2005) Neurointermediate pituitary lobectomy decreases the incidence and severity of experimental autoimmune encephalomyelitis in Lewis rats. J Endocrinol 184:51–58PubMedCrossRefGoogle Scholar
  26. 26.
    Becher B, Durell BG, Miga AV, Hickey WF, Noelle RJ (2001) The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J Exp Med 193:967–974PubMedCrossRefGoogle Scholar
  27. 27.
    Rossi S, Furlan R, De Chiara V, Motta C, Studer V, Mori F, Musella A, Bergami A, Muzio L, Bernardi G, Battistini L, Martino G, Centonze D (2012) Interleukin-1β causes synaptic hyperexcitability in multiple sclerosis. Ann Neurol 71:76–83PubMedCrossRefGoogle Scholar
  28. 28.
    Pollak Y, Orion E, Goshen I, Ovadia H, Yirmiya R (2002) Experimental autoimmune encephalomyelitis-associated behavioral syndrome as a model of ‘depression due to multiple sclerosis’. Brain Behav Immun 16:533–543PubMedCrossRefGoogle Scholar
  29. 29.
    Lou ZY, Chen C, He Q, Zhao CB, Xiao BG (2011) Targeting CB2 receptor as a neuroinflammatory modulator in experimental autoimmune encephalomyelitis. Mol Immunol 49:453–461PubMedCrossRefGoogle Scholar
  30. 30.
    Vana AC, Li S, Ribeiro R, Tchantchou F, Zhang Y (2011) Arachidonyl trifluoromethyl ketone ameliorates experimental autoimmune encephalomyelitis via blocking peroxynitrite formation in mouse spinal cord white matter. Exp Neurol 231:45–55PubMedCrossRefGoogle Scholar
  31. 31.
    Smith MR, Lee H, Fallon MA, Nathan DM (2008) Adipocytokines, obesity, and insulin resistance during combined androgen blockade for prostate cancer. Urology 71:318–322PubMedCrossRefGoogle Scholar
  32. 32.
    Harris VK, Sadiq SA (2009) Disease biomarkers in multiple sclerosis, potential for use in therapeutic decision making. Mol Diagn Ther 13:225–244PubMedCrossRefGoogle Scholar
  33. 33.
    Gresle MM, Butzkueven H, Shaw G (2011) Neurofilament proteins as body fluid biomarkers of neurodegeneration in multiple sclerosis. Mult Scler Int 2011:1–7CrossRefGoogle Scholar
  34. 34.
    Vickers JC, King AE, Woodhouse A, Kirkcaldie MT, Staal JA, McCormack GH, Blizzard CA, Musgrove RE, Mitew S, Liu Y, Chuckowree JA, Bibari O, Dickson TC (2009) Axonopathy and cytoskeletal disruption in degenerative diseases of the central nervous system. Brain Res Bull 80:217–223PubMedCrossRefGoogle Scholar
  35. 35.
    Avsar T, Korkmaz D, Tütüncü M, Demirci NO, Saip S, Kamasak M, Siva A, Turanli ET (2012) Protein biomarkers for multiple sclerosis: semi-quantitative analysis of cerebrospinal fluid candidate protein biomarkers in different forms of multiple sclerosis. Mult Scler. doi: 10.1177/1352458511433303 PubMedGoogle Scholar
  36. 36.
    De Rosbo NK, Bernard CCA, Simmons RD, Carnegie PR (1985) Concomitant detection of changes in myelin basic protein and permeability of blood-spinal cord barrier in acute experimental autoimmune encephalomyelitis by electroimmunoblotting. J Neuroimmunol 9:349–361CrossRefGoogle Scholar
  37. 37.
    Almolda B, Costa M, Montoya M, González B, Castellano B (2011) Increase in Th17 and T-reg lymphocytes and decrease of IL22 correlate with the recovery phase of acute EAE in rat. PLoS One 6:e27473PubMedCrossRefGoogle Scholar
  38. 38.
    Mirowska-Guzel D (2009) The role of neurotrophic factors in the pathology and treatment of multiple sclerosis. Immunopharmacol Immunotoxicol 31:32–38PubMedCrossRefGoogle Scholar
  39. 39.
    Kastin AJ, Coy DH, Schally AV, Zadina JE (1980) Dissociation of effects of LH-RH analogs on pituitary regulation and reproductive behavior. Pharmacol Biochem Behav 13:913–914PubMedCrossRefGoogle Scholar
  40. 40.
    Barrera CM, Kastin AJ, Fasold MB, Banks WA (1991) Bidirectional saturable transport of LHRH across the blood-brain barrier. Am J Physiol 261:E312–E318PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Irene Guzmán-Soto
    • 1
  • Eva Salinas
    • 2
  • Irma Hernández-Jasso
    • 1
  • J. Luis Quintanar
    • 1
  1. 1.Laboratory of Neurophysiology, Department of Physiology and PharmacologyCentro de Ciencias Básicas, Universidad Autónoma de AguascalientesAguascalientesMexico
  2. 2.Laboratory of Immunology, Department of MicrobiologyCentro de Ciencias Básicas, Universidad Autónoma de AguascalientesAguascalientesMexico

Personalised recommendations