Advertisement

Neurochemical Research

, Volume 37, Issue 8, pp 1697–1706 | Cite as

Inhibition of Nuclear Factor Erythroid 2-Related Factor 2 Exacerbates HIV-1 gp120-Induced Oxidative and Inflammatory Response: Role in HIV Associated Neurocognitive Disorder

  • Pichili Vijaya Bhaskar Reddy
  • Marisela Agudelo
  • Venkata S. R. Atluri
  • Madhavan P. Nair
Original Paper

Abstract

The HIV epidemic continues to be the most severe public health problem and concern within USA and across the globe. In spite of the highly active antiretroviral therapy, HIV infected subjects experience major neurological complications that range from HIV associated dementia to moderate neurocognitive and motor impairments collectively termed as HIV associated neurocognitive disorders (HAND). Astrocytes play an important role in the neuropathogenesis of HAND. Further, in the recent years it has been shown that oxidative stress plays a major role in the neuropathogenesis of HAND. Nuclear factor erythroid 2-related factor 2 (Nrf2), a leucine zipper redox-sensitive transcription factor, is an important regulator of cell survival and adaptive mechanisms and has been shown to possess a protective role in a variety of neurological and inflammatory disorders. Earlier we have shown that Nrf2 is upregulated in response to HIV-1 gp120 and such upregulation of Nrf2 may be a protective mechanism against the HIV-induced oxidative stress. We hypothesize that Nrf2-mediated antioxidant pathways are important in regulating the HIV-induced oxidative stress and that the disruption of Nrf2 makes the cells more susceptible to HIV gp120-induced deleterious effects. Our results indicate that when astrocytes are exposed to gp120 there is an increase in the expression of NOX2, a subunit of NADPH oxidase, and also an upregulated expression of nuclear factor kappa B, tumor necrosis factor-α (TNF-α) and matrix metalloproteinase-9 (MMP-9). However, the degree of expression was significantly higher in those cells where Nrf2 was silenced by siRNA. Taken together, these results suggest a possible protective role of Nrf2 in regulating the levels of pro-oxidative and pro-inflammatory molecules in HAND.

Keywords

Nrf2 Oxidative stress Inflammation NADPH oxidase HIV 

Notes

Acknowledgments

This study was supported by the grants from National Institute of Health (NIH) RO1DA021537, R37DA025576, and RO1MH085259.

References

  1. 1.
    Ellis R, Langford D, Masliah E (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci 8:33–44PubMedCrossRefGoogle Scholar
  2. 2.
    Woods SP, Moore DJ, Weber E, Grant I (2009) Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol Rev 19:152–168PubMedCrossRefGoogle Scholar
  3. 3.
    McArthur JC, Brew BJ (2010) HIV-associated neurocognitive disorders: is there a hidden epidemic? Aids 24:1367–1370PubMedCrossRefGoogle Scholar
  4. 4.
    Nath A, Geiger J (1998) Neurobiological aspects of human immunodeficiency virus infection: neurotoxic mechanisms. Prog Neurobiol 54:19–33PubMedCrossRefGoogle Scholar
  5. 5.
    Yang Y, Yao H, Lu Y, Wang C, Buch S (2010) Cocaine potentiates astrocyte toxicity mediated by human immunodeficiency virus (HIV-1) protein gp120. PLoS ONE 5:e13427PubMedCrossRefGoogle Scholar
  6. 6.
    Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202:13–23PubMedCrossRefGoogle Scholar
  7. 7.
    Thompson KA, McArthur JC, Wesselingh SL (2001) Correlation between neurological progression and astrocyte apoptosis in HIV-associated dementia. Ann Neurol 49:745–752PubMedCrossRefGoogle Scholar
  8. 8.
    Lipton SA (1992) Models of neuronal injury in AIDS: another role for the NMDA receptor? Trends Neurosci 15:75–79PubMedCrossRefGoogle Scholar
  9. 9.
    Ushijima H, Nishio O, Klocking R, Perovic S, Muller WE (1995) Exposure to gp120 of HIV-1 induces an increased release of arachidonic acid in rat primary neuronal cell culture followed by NMDA receptor-mediated neurotoxicity. Eur J Neurosci 7:1353–1359PubMedCrossRefGoogle Scholar
  10. 10.
    Ilyin SE, Plata-Salaman CR (1997) HIV-1 gp120 modulates hypothalamic cytokine mRNAs in vivo: implications to cytokine feedback systems. Biochem Biophys Res Commun 231:514–518PubMedCrossRefGoogle Scholar
  11. 11.
    Aksenov MY, Hasselrot U, Bansal AK, Wu G, Nath A, Anderson C, Mactutus CF, Booze RM (2001) Oxidative damage induced by the injection of HIV-1 Tat protein in the rat striatum. Neurosci Lett 305:5–8PubMedCrossRefGoogle Scholar
  12. 12.
    Aksenov MY, Hasselrot U, Wu G, Nath A, Anderson C, Mactutus CF, Booze RM (2003) Temporal relationships between HIV-1 Tat-induced neuronal degeneration, OX-42 immunoreactivity, reactive astrocytosis, and protein oxidation in the rat striatum. Brain Res 987:1–9PubMedCrossRefGoogle Scholar
  13. 13.
    Bansal AK, Mactutus CF, Nath A, Maragos W, Hauser KF, Booze RM (2000) Neurotoxicity of HIV-1 proteins gp120 and Tat in the rat striatum. Brain Res 879:42–49PubMedCrossRefGoogle Scholar
  14. 14.
    Sacktor N, Haughey N, Cutler R, Tamara A, Turchan J, Pardo C, Vargas D, Nath A (2004) Novel markers of oxidative stress in actively progressive HIV dementia. J Neuroimmunol 157:176–184PubMedCrossRefGoogle Scholar
  15. 15.
    Betteridge DJ (2000) What is oxidative stress? Metabolism 49:3–8PubMedCrossRefGoogle Scholar
  16. 16.
    Reddy NM, Kleeberger SR, Kensler TW, Yamamoto M, Hassoun PM, Reddy SP (2009) Disruption of Nrf2 impairs the resolution of hyperoxia-induced acute lung injury and inflammation in mice. J Immunol 182:7264–7271PubMedCrossRefGoogle Scholar
  17. 17.
    Louboutin JP, Reyes BA, Agrawal L, Van Bockstaele EJ, Strayer DS (2010) HIV-1 gp120-induced neuroinflammation: relationship to neuron loss and protection by rSV40-delivered antioxidant enzymes. Exp Neurol 221:231–245PubMedCrossRefGoogle Scholar
  18. 18.
    Ronaldson PT, Bendayan R (2008) HIV-1 viral envelope glycoprotein gp120 produces oxidative stress and regulates the functional expression of multidrug resistance protein-1 (Mrp1) in glial cells. J Neurochem 106:1298–1313PubMedCrossRefGoogle Scholar
  19. 19.
    Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194PubMedCrossRefGoogle Scholar
  20. 20.
    Nath A (2002) Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis 186(Suppl 2):S193–S198PubMedCrossRefGoogle Scholar
  21. 21.
    Pocernich CB, La Fontaine M, Butterfield DA (2000) In vivo glutathione elevation protects against hydroxyl free radical-induced protein oxidation in rat brain. Neurochem Int 36:185–191PubMedCrossRefGoogle Scholar
  22. 22.
    Pocernich CB, Poon HF, Boyd-Kimball D, Lynn BC, Nath A, Klein JB, Butterfield DA (2005) Proteomic analysis of oxidatively modified proteins induced by the mitochondrial toxin 3-nitropropionic acid in human astrocytes expressing the HIV protein tat. Brain Res Mol Brain Res 133:299–306PubMedCrossRefGoogle Scholar
  23. 23.
    Viviani B, Corsini E, Binaglia M, Galli CL, Marinovich M (2001) Reactive oxygen species generated by glia are responsible for neuron death induced by human immunodeficiency virus-glycoprotein 120 in vitro. Neuroscience 107:51–58PubMedCrossRefGoogle Scholar
  24. 24.
    Chauhan A, Turchan J, Pocernich C, Bruce-Keller A, Roth S, Butterfield DA, Major EO, Nath A (2003) Intracellular human immunodeficiency virus Tat expression in astrocytes promotes astrocyte survival but induces potent neurotoxicity at distant sites via axonal transport. J Biol Chem 278:13512–13519PubMedCrossRefGoogle Scholar
  25. 25.
    Mattson MP, Haughey NJ, Nath A (2005) Cell death in HIV dementia. Cell Death Differ 12(Suppl 1):893–904PubMedCrossRefGoogle Scholar
  26. 26.
    Turchan J, Pocernich CB, Gairola C, Chauhan A, Schifitto G, Butterfield DA, Buch S, Narayan O, Sinai A, Geiger J et al (2003) Oxidative stress in HIV demented patients and protection ex vivo with novel antioxidants. Neurology 60:307–314PubMedCrossRefGoogle Scholar
  27. 27.
    Ma Q, Kinneer K, Bi Y, Chan JY, Kan YW (2004) Induction of murine NAD(P)H:quinone oxidoreductase by 2,3,7,8-tetrachlorodibenzo-p-dioxin requires the CNC (cap ‘n’ collar) basic leucine zipper transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2): cross-interaction between AhR (aryl hydrocarbon receptor) and Nrf2 signal transduction. Biochem J 377:205–213PubMedCrossRefGoogle Scholar
  28. 28.
    Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10:549–557PubMedCrossRefGoogle Scholar
  29. 29.
    Nguyen T, Sherratt PJ, Nioi P, Yang CS, Pickett CB (2005) Nrf2 controls constitutive and inducible expression of ARE-driven genes through a dynamic pathway involving nucleocytoplasmic shuttling by Keap1. J Biol Chem 280:32485–32492PubMedCrossRefGoogle Scholar
  30. 30.
    Alfieri A, Srivastava S, Siow RC, Modo M, Fraser PA, Mann GE (2011) Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke. J Physiol 589:4125–4136PubMedCrossRefGoogle Scholar
  31. 31.
    Chen G, Fang Q, Zhang J, Zhou D, Wang Z (2011) Role of the Nrf2-ARE pathway in early brain injury after experimental subarachnoid hemorrhage. J Neurosci Res 89:515–523PubMedCrossRefGoogle Scholar
  32. 32.
    Guerrero-Beltran CE, Calderon-Oliver M, Pedraza-Chaverri J, Chirino YI (2010) Protective effect of sulforaphane against oxidative stress: recent advances. Exp Toxicol Pathol. doi: 10.1016/j.etp.2010.11.005
  33. 33.
    Kuang X, Scofield VL, Yan M, Stoica G, Liu N, Wong PK (2009) Attenuation of oxidative stress, inflammation and apoptosis by minocycline prevents retrovirus-induced neurodegeneration in mice. Brain Res 1286:174–184PubMedCrossRefGoogle Scholar
  34. 34.
    Rojo AI, Innamorato NG, Martin-Moreno AM, De Ceballos ML, Yamamoto M, Cuadrado A (2010) Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia 58:588–598PubMedGoogle Scholar
  35. 35.
    Siebert A, Desai V, Chandrasekaran K, Fiskum G, Jafri MS (2009) Nrf2 activators provide neuroprotection against 6-hydroxydopamine toxicity in rat organotypic nigrostriatal cocultures. J Neurosci Res 87:1659–1669PubMedCrossRefGoogle Scholar
  36. 36.
    Reddy PV, Gandhi N, Samikkannu T, Saiyed Z, Agudelo M, Yndart A, Khatavkar P, Nair MP (2011) HIV-1 gp120 induces antioxidant response element-mediated expression in primary astrocytes: Role in HIV associated neurocognitive disorder. Neurochem Int. doi: 10.1016/j.neuint.2011.06.011
  37. 37.
    Zhang HS, Li HY, Zhou Y, Wu MR, Zhou HS (2009) Nrf2 is involved in inhibiting Tat-induced HIV-1 long terminal repeat transactivation. Free Radic Biol Med 47:261–268PubMedCrossRefGoogle Scholar
  38. 38.
    Ikezu T (2009) The aging of human-immunodeficiency-virus-associated neurocognitive disorders. J Neuroimmune Pharmacol 4:161–162PubMedCrossRefGoogle Scholar
  39. 39.
    Kanmogne GD, Schall K, Leibhart J, Knipe B, Gendelman HE, Persidsky Y (2007) HIV-1 gp120 compromises blood-brain barrier integrity and enhances monocyte migration across blood-brain barrier: implication for viral neuropathogenesis. J Cereb Blood Flow Metab 27:123–134PubMedCrossRefGoogle Scholar
  40. 40.
    Toborek M, Lee YW, Flora G, Pu H, Andras IE, Wylegala E, Hennig B, Nath A (2005) Mechanisms of the blood-brain barrier disruption in HIV-1 infection. Cell Mol Neurobiol 25:181–199PubMedCrossRefGoogle Scholar
  41. 41.
    Mollace V, Nottet HS, Clayette P, Turco MC, Muscoli C, Salvemini D, Perno CF (2001) Oxidative stress and neuroAIDS: triggers, modulators and novel antioxidants. Trends Neurosci 24:411–416PubMedCrossRefGoogle Scholar
  42. 42.
    Nicolini A, Ajmone-Cat MA, Bernardo A, Levi G, Minghetti L (2001) Human immunodeficiency virus type-1 Tat protein induces nuclear factor (NF)-kappaB activation and oxidative stress in microglial cultures by independent mechanisms. J Neurochem 79:713–716PubMedCrossRefGoogle Scholar
  43. 43.
    Rappaport J, Joseph J, Croul S, Alexander G, Del Valle L, Amini S, Khalili K (1999) Molecular pathway involved in HIV-1-induced CNS pathology: role of viral regulatory protein. Tat J Leukoc Biol 65:458–465Google Scholar
  44. 44.
    Park J, Choi K, Jeong E, Kwon D, Benveniste EN, Choi C (2004) Reactive oxygen species mediate chloroquine-induced expression of chemokines by human astroglial cells. Glia 47:9–20PubMedCrossRefGoogle Scholar
  45. 45.
    Song HY, Ju SM, Seo WY, Goh AR, Lee JK, Bae YS, Choi SY, Park J (2011) Nox2-based NADPH oxidase mediates HIV-1 Tat-induced up-regulation of VCAM-1/ICAM-1 and subsequent monocyte adhesion in human astrocytes. Free Radic Biol Med 50:576–584PubMedCrossRefGoogle Scholar
  46. 46.
    Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23:3394–3406PubMedGoogle Scholar
  47. 47.
    Qiang W, Cahill JM, Liu J, Kuang X, Liu N, Scofield VL, Voorhees JR, Reid AJ, Yan M, Lynn WS, Wong PK (2004) Activation of transcription factor Nrf-2 and its downstream targets in response to moloney murine leukemia virus ts1-induced thiol depletion and oxidative stress in astrocytes. J Virol 78:11926–11938PubMedCrossRefGoogle Scholar
  48. 48.
    Abramov AY, Jacobson J, Wientjes F, Hothersall J, Canevari L, Duchen MR (2005) Expression and modulation of an NADPH oxidase in mammalian astrocytes. J Neurosci 25:9176–9184PubMedCrossRefGoogle Scholar
  49. 49.
    Wu RF, Ma Z, Myers DP, Terada LS (2007) HIV-1 Tat activates dual Nox pathways leading to independent activation of ERK and JNK MAP kinases. J Biol Chem 282:37412–37419PubMedCrossRefGoogle Scholar
  50. 50.
    Williams R, Yao H, Peng F, Yang Y, Bethel-Brown C, Buch S (2010) Cooperative induction of CXCL10 involves NADPH oxidase: Implications for HIV dementia. Glia 58:611–621PubMedGoogle Scholar
  51. 51.
    Turchan-Cholewo J, Dimayuga VM, Gupta S, Gorospe RM, Keller JN, Bruce-Keller AJ (2009) NADPH oxidase drives cytokine and neurotoxin release from microglia and macrophages in response to HIV-Tat. Antioxid Redox Signal 11:193–204PubMedCrossRefGoogle Scholar
  52. 52.
    Kong X, Thimmulappa R, Kombairaju P, Biswal S (2010) NADPH oxidase-dependent reactive oxygen species mediate amplified TLR4 signaling and sepsis-induced mortality in Nrf2-deficient mice. J Immunol 185:569–577PubMedCrossRefGoogle Scholar
  53. 53.
    Shah A, Kumar A (2010) HIV-1 gp120-mediated increases in IL-8 production in astrocytes are mediated through the NF-kappaB pathway and can be silenced by gp120-specific siRNA. J Neuroinflammation 7:96PubMedCrossRefGoogle Scholar
  54. 54.
    Saha RN, Pahan K (2007) Differential regulation of Mn-superoxide dismutase in neurons and astroglia by HIV-1 gp120: implications for HIV-associated dementia. Free Radic Biol Med 42:1866–1878PubMedCrossRefGoogle Scholar
  55. 55.
    Williams R, Dhillon NK, Hegde ST, Yao H, Peng F, Callen S, Chebloune Y, Davis RL, Buch SJ (2009) Proinflammatory cytokines and HIV-1 synergistically enhance CXCL10 expression in human astrocytes. Glia 57:734–743PubMedCrossRefGoogle Scholar
  56. 56.
    Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, Biswal S (2006) Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest 116:984–995PubMedCrossRefGoogle Scholar
  57. 57.
    Surh YJ, Na HK (2008) NF-kappaB and Nrf2 as prime molecular targets for chemoprevention and cytoprotection with anti-inflammatory and antioxidant phytochemicals. Genes Nutr 2:313–317PubMedCrossRefGoogle Scholar
  58. 58.
    Mao L, Wang H, Qiao L, Wang X (2011) Disruption of Nrf2 enhances the upregulation of nuclear factor-kappaB activity, tumor necrosis factor-alpha, and matrix metalloproteinase-9 after spinal cord injury in mice. Mediators Inflamm 2010:238321Google Scholar
  59. 59.
    Chen XL, Kunsch C (2004) Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Curr Pharm Des 10:879–891PubMedCrossRefGoogle Scholar
  60. 60.
    Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322PubMedCrossRefGoogle Scholar
  61. 61.
    Mori N, Sato H, Hayashibara T, Senba M, Geleziunas R, Wada A, Hirayama T, Yamamoto N (2003) Helicobacter pylori induces matrix metalloproteinase-9 through activation of nuclear factor kappaB. Gastroenterology 124:983–992PubMedCrossRefGoogle Scholar
  62. 62.
    Ju SM, Song HY, Lee JA, Lee SJ, Choi SY, Park J (2009) Extracellular HIV-1 Tat up-regulates expression of matrix metalloproteinase-9 via a MAPK-NF-kappaB dependent pathway in human astrocytes. Exp Mol Med 41:86–93PubMedCrossRefGoogle Scholar
  63. 63.
    Moi P, Chan K, Asunis I, Cao A, Kan YW (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA 91:9926–9930PubMedCrossRefGoogle Scholar
  64. 64.
    Sporer B, Paul R, Koedel U, Grimm R, Wick M, Goebel FD, Pfister HW (1998) Presence of matrix metalloproteinase-9 activity in the cerebrospinal fluid of human immunodeficiency virus-infected patients. J Infect Dis 178:854–857PubMedCrossRefGoogle Scholar
  65. 65.
    Bond M, Fabunmi RP, Baker AH, Newby AC (1998) Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B. FEBS Lett 435:29–34PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Pichili Vijaya Bhaskar Reddy
    • 1
  • Marisela Agudelo
    • 1
  • Venkata S. R. Atluri
    • 1
  • Madhavan P. Nair
    • 1
  1. 1.Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of MedicineFlorida International UniversityMiamiUSA

Personalised recommendations