Skip to main content
Log in

The Interactions of Nitric Oxide and Acetylcholine on Penicillin-Induced Epilepsy in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the interaction between nitric oxide (NO) and acetylcholine (ACh) in penicillin-induced experimental epilepsy. Adult male Wistar rats weighing 220 ± 35 g were used in the experiments. The epileptiform activity was induced by microinjection of penicillin (200 IU/1 μl) into the left sensorymotor cortex. Electrocorticogram was recorded by using Ag/AgCl ball electrodes. Sodium nitroprusside (SNP), a NO donor, given intracortically 30 min after penicillin significantly reduced the spike frequency whereas ACh increased the epileptiform activity for 5 min. Atropine, an antagonist for muscarinic receptors, was given intracortically 30 min after penicillin and did not significantly affect epileptiform activity for 30 min. SNP given after atropine significantly suppressed the epileptiform activity. ACh given 10 min after Nω-nitro-l-arginine methyl ester (L-NAME), a nonspecific nitric oxide synthase inhibitor, did not have a significant effect on spike frequency. When ACh and SNP were administered together, penicillin induced epileptiform activity and spike frequency were significantly suppressed from the 10th minute onwards. It can be concluded that ACh increases the penicillin-induced epileptiform activity while co-administration of ACh and SNP produces a potent anticonvulsant effect as compared to SNP alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fisher RS (1989) Animal models of the epilepsies. Brain Res Rev 14:245–278

    Article  PubMed  CAS  Google Scholar 

  2. Lösher W, Schmidt D (1994) Strategies in antiepileptic drug development: is rational drug design superior to random screening and structural variation? Epilepsy Res 17:95–134

    Article  Google Scholar 

  3. Collins RC (1976) Metabolic response to focal penicillin seizures in rat: spike discharge vs. afterdischarge. J Neurochem 27:1473–1482

    Article  PubMed  CAS  Google Scholar 

  4. Holmes O, Wallace MN, Campbell AM (1987) Comparison of penicillin epileptogenesis in rat somatosensory and motor cortex. Q J Exp Physiol 72:439–452

    PubMed  CAS  Google Scholar 

  5. Marangoz C, Ayyildiz M, Agar E (1994) Evidence that sodium nitroprusside possesses anticonvulsant effects mediated through nitric oxide. NeuroReport 5:2454–2456

    Article  PubMed  CAS  Google Scholar 

  6. Zwiener U, Eiselt M, Flemming L et al (2000) Early magnetic field changes preceding the intracortical penicillin induced spikes. Epilepsy Res 38:217–229

    Article  PubMed  CAS  Google Scholar 

  7. Yildirim M, Marangoz C (2007) Anticonvulsant effects of focal and intracerebroventricular adenosine on penicillin-induced epileptiform activity in rats. Brain Res 1127:193–200

    Article  PubMed  CAS  Google Scholar 

  8. Abidin I, Yildirim M, Aydin-Abidin S et al (2011) Penicillin induced epileptiform activity and EEG spectrum analysis of BDNF heterozygous mice: an in vivo electrophysiological study. Brain Res Bull 86:159–164

    Article  PubMed  CAS  Google Scholar 

  9. Yildirim M, Marangoz AH, Ayyildiz M et al (2011) The interactions of nitric oxide and adenosine on penicillin induced epileptiform activity in rats. Acta Neurobiol Exp 71:208–219

    Google Scholar 

  10. Horn E, Esseling K (1993) Arrest of seizure series induced by an intracortical injection of penicillin in the awake rat. Pharmacol Biochem Behav 45:857–863

    Article  PubMed  CAS  Google Scholar 

  11. el-Yamany NA, Horn E (2002) Time courses of aspartate and glutamate concentrations in the focus area during penicillin induced epileptiform activity in awake rats. Arch Ital Biol 140:13–30

    PubMed  CAS  Google Scholar 

  12. Prince DA (1978) Neurophysiology of epilepsy. Annu Rev Neurosci 1:395–415

    Article  PubMed  CAS  Google Scholar 

  13. Walczac TS, Jayakar P (1997) Interictal Electroencephalography. In: Engel J, Pedley TA (eds) Epilepsy: a comprehensive textbook. Raven Press, New York, pp 831–848

    Google Scholar 

  14. Stafstrom CE (2006) Epilepsy: a review of selected clinical syndromes and advances in basic science. J Cereb Blood Flow Metab 26:983–1004

    Article  PubMed  CAS  Google Scholar 

  15. Pitkanen A, Schwartzkroin PA, Moshe SL (2006) Models of seizures and epilepsy. Elsevier, Amsterdam

    Google Scholar 

  16. Furchgott RF, Zawadzki JV (1980) Obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  17. Ignarro LJ, Buga GM, Wood KS et al (1987) Endothelium derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    Article  PubMed  CAS  Google Scholar 

  18. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  19. Garthwaite J (1991) Glutamate, nitric oxide and cell–cell signalling in the nervous system. Trends Neurosci 14:60–67

    Article  PubMed  CAS  Google Scholar 

  20. Griffith OW, Stuehr DJ (1995) Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 57:707–736

    Article  PubMed  CAS  Google Scholar 

  21. Mollace V, Bagetta G, Nistico G (1991) Evidence that l-arginine possesses proconvulsant effects mediated through nitric oxide. NeuroReport 2:269–272

    Article  PubMed  CAS  Google Scholar 

  22. De Sarro G, Di Paola ED, De Sarro A et al (1991) Role of nitric oxide in the genesis of excitatory amino acid-induced seizures from the deep prepiriform cortex. Fundam Clin Pharmacol 5:503–511

    Article  PubMed  Google Scholar 

  23. De Sarro G, Di Paola ED, De Sarro A et al (1993) l-arginine potentiates excitatory amino acid-induced seizures elicited in the deep prepiriform cortex. Eur J Pharmacol 230(2):151–158

    Article  PubMed  Google Scholar 

  24. Mülsch A, Busse R, Mordvintcev PI et al (1994) Nitric oxide promotes seizure activity in kainate-treated rats. NeuroReport 5:2325–2328

    Article  PubMed  Google Scholar 

  25. Buisson A, Lakhmeche N, Verrecchia C et al (1993) Nitric oxide: an endogenous anticonvulsant substance. NeuroReport 4:444–446

    Article  PubMed  CAS  Google Scholar 

  26. Marangoz C, Bagirici F (2001) Effects of l-arginine on penicillin-induced epileptiform activity in rats. Jpn J Pharmacol 86:297–301

    Article  PubMed  CAS  Google Scholar 

  27. Ayyildiz M, Yildirim M, Agar E (2007) The involvement of nitric oxide in the anticonvulsant effects of alpha-tocopherol on penicillin-induced epileptiform activity in rats. Epilepsy Res 73:166–172

    Article  PubMed  CAS  Google Scholar 

  28. Przegalinski E, Baran L, Siwanowicz J (1994) The role of nitric oxide in the kainate-induced seizures in mice. Neurosci Lett 170:74–76

    Article  PubMed  CAS  Google Scholar 

  29. Bagetta G, Iannone M, Palma E et al (1995) Lack of involvement of nitric oxide in the mechanisms of seizures and hippocampal damage produced by kainate and ouabain in rats. Neurodegeneration 4:43–49

    Article  PubMed  CAS  Google Scholar 

  30. Maggio R, Fumagalli F, Donati E et al (1995) Inhibition of nitric oxide synthase dramatically potentiates seizures induced by kainic acid and pilocarpine in rats. Brain Res 679:184–187

    Article  PubMed  CAS  Google Scholar 

  31. Rigaud-Monnet AS, Heron A, Seylaz J (1995) Effect of inhibiting NO synthesis on hippocampal extracellular glutamate concentration in seizures induced by kainic acid. Brain Res 673:297–303

    Article  PubMed  CAS  Google Scholar 

  32. Kaputlu I, Uzbay T (1997) L-NAME inhibits pentylenetetrazole and strychnine-induced seizures in mice. Brain Res 753:98–101

    Article  PubMed  CAS  Google Scholar 

  33. Gupta RC, Dettbarn WD (2003) Prevention of kainic acid seizures-induced changes in levels of nitric oxide and high-energy phosphates by 7-nitroindazole in rat brain regions. Brain Res 981:184–192

    Article  PubMed  CAS  Google Scholar 

  34. Kato N, Sato S, Yokoyama H (2005) Sequential changes of nitric oxide levels in the temporal lobes of kainic acid-treated mice following application of nitric oxide synthase inhibitors and phenobarbital. Epilepsy Res 65:81–91

    Article  PubMed  CAS  Google Scholar 

  35. Del-Bel EA, Oliveira PR, Oliveira JAC (1997) Anticonvulsant and proconvulsant roles of nitric oxide in experimental epilepsy models. Braz J Med Biol Res 30:971–979

    Article  PubMed  CAS  Google Scholar 

  36. Paul V, Ekambaram P (2005) Effects of sodium nitroprusside, a nitric oxide donor, on γ-aminobutyric acid concentration in the brain and on picrotoxin-induced convulsions in combination with phenobarbitone in rats. Pharmacol Biochem Behav 80:363–370

    Article  PubMed  CAS  Google Scholar 

  37. Itoh K, Watanabe M (2009) Paradoxical facilitation of pentylenetetrazole-induced convulsion susceptibility in mice lacking neuronal nitric oxide synthase. Neuroscience 159:735–743

    Article  PubMed  CAS  Google Scholar 

  38. Decker MV, McGaugh JL (1991) The role of interactions between the cholinergic system and other neuromodulatory system in learning and memory. Synapse 7:151–168

    Article  PubMed  CAS  Google Scholar 

  39. Rasmusson DD (2000) The role of acetylcholine in cortical synaptic plasticity. Behav Brain Res 115:205–218

    Article  PubMed  CAS  Google Scholar 

  40. McKinney M, Coyle JT (1991) The Potential for muscarinic receptor subtype-specific pharmacotherapy for Alzheimer’s disease. Mayo Clin Proc 66:1225–1237

    PubMed  CAS  Google Scholar 

  41. Hamilton SE, Loose MD, Qi M et al (1997) Disruption of the M1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc Natl Acad Sci USA 94:13311–13316

    Article  PubMed  CAS  Google Scholar 

  42. Bymaster FP, Carter PA, Yamada M et al (2003) Role of specific muscarinic receptor subtypes in cholinergic parasympathomimetic responses, phosphoinositide hydrolysis, and pilocarpine-induced seizure activity. Eur J Neurosci 17:1403–1410

    Article  PubMed  Google Scholar 

  43. Honchar MP, Olney JW, Sherman WR (1983) Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats. Science 220:323–325

    Article  PubMed  CAS  Google Scholar 

  44. Turski WA, Cavalheiro EA, Schwarz M et al (1983) Limbic seizures produced by pilocarpine in rats: a behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9:315–335

    Article  PubMed  CAS  Google Scholar 

  45. Minvielle J, Cadilhac J, Passouant P (1953) The effect of atropine in epileptics. Rev Neurol (Paris) 89:430–433

    CAS  Google Scholar 

  46. Bagri A, Di Scala G, Sandner G (1999) Myoclonic and tonic seizures elicited by microinjection of cholinergic drugs into the inferior colliculus. Therapie 54:589–594

    PubMed  CAS  Google Scholar 

  47. Eşkazan E, Aker R, Onat F et al (1999) Effect of pirenzepine, a muscarinic M1 receptor antagonist, on amygdala kindling in rat. Epilepsy Res 37:133–140

    Article  PubMed  Google Scholar 

  48. Peterson SL, Armstrong JJ, Walker MK (2000) Focal microinjection of carbachol into the periaqueductal gray induces seizures in the forebrain of the rat. Epilepsy Res 42:169–181

    Article  PubMed  CAS  Google Scholar 

  49. Potier S, Psarropoulou C (2001) Endogenous acetylcholine facilitates epileptogenesis in immature rat neocortex. Neurosci Lett 302:25–28

    Article  PubMed  CAS  Google Scholar 

  50. Montagne-Clavel J, Olivéras JL (1997) Cholinergic modulation of the picrotoxin-induced elecrtocorticographical events and behavioral “pain like” symptoms at somatomotor cortical level in the rat. Exp Brain Res 117:362–368

    Article  PubMed  CAS  Google Scholar 

  51. Xu Z, Yong C, Eisenach JC (1996) Acetylcholine stimulates the release of nitric oxide from rat spinal cord. Anesthesiology 85:107–111

    Article  PubMed  CAS  Google Scholar 

  52. Hebeib K, Kilbinger H (1996) Differential effects of nitric oxide donors on basal and electrically evoked release of acetylcholine from guinea-pig myenteric neurones. Br J Pharmacol 118:2073–2078

    Google Scholar 

  53. Khurana S, Chacon I, Xie G et al (2004) Vasodilatory effects of cholinergic agonists are greatly diminished in aorta from M3R–/– mice. Eur J Pharmacol 493:127–132

    Article  PubMed  CAS  Google Scholar 

  54. Sartori C, Lepori M, Scherrer U (2005) Interaction between nitric oxide and the cholinergic and sympathetic nervous system in cardiovascular control in human. Pharmacol Therap 106:209–220

    Article  CAS  Google Scholar 

  55. Linden DR, el-Fakahany EE (2002) Arachidonic acid inhibition of muscarinic receptor mediated nitric oxide production occurs at the level of calcium mobilization in Chinese hamster ovary cells. Neurochem Res 27:441–449

    Article  PubMed  CAS  Google Scholar 

  56. Cimini BA, Strang CE, Wotring VE et al (2008) Role of acetylcholine in nitric oxide production in the salamander retina. J Comp Neurol 507:1952–1963

    Article  PubMed  CAS  Google Scholar 

  57. Buchholzer ML, Klein J (2002) NMDA-induced acetylcholine release in mouse striatum: role of NO synthase isoforms. J Neurochem 82:1558–1560

    Article  PubMed  CAS  Google Scholar 

  58. Sugimoto M, Fukami S, Kayakiri H et al (2002) The beta-lactam antibiotics, penicillin-G and cefoselis have different mechanisms and sites of action at GABA(A) receptors. Br J Pharmacol 135:427–432

    Article  PubMed  CAS  Google Scholar 

  59. Craig CR (1998) Models of focal epilepsy in rodents. In: Peterson SL, Albertson TE (eds) Neuropharmacology methods in epilepsy research. CRC Press, Boca Raton

    Google Scholar 

  60. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, New York

    Google Scholar 

  61. Wong RK, Prince DA (1979) Dendritic mechanisms underlying penicillin-induced epileptiform activity. Science 204:1228–1231

    Article  PubMed  CAS  Google Scholar 

  62. Marangoz C (1996) Nitric oxide and experimental epilepsy. J Exp Clin Med 13:165–183

    Google Scholar 

  63. Hrnčić D, Rašić-Marković A, Krstić D et al (2010) The role of nitric oxide in homocysteine thiolactone-induced seizures in adult rats. Cell Mol Neurobiol 30:219–231

    Article  PubMed  Google Scholar 

  64. Kriegstein AR, Suppes T, Prince DA (1983) Cholinergic enhancement of penicillin induced epileptiform discharges in pyramidal neurons of the guinea pig hippocampus. Brain Res 266:137–142

    Article  PubMed  CAS  Google Scholar 

  65. Krnjevic K (2004) Synaptic mechanisms modulated by acetylcholine in cerebral cortex. Prog Brain Res 145:81–93

    PubMed  CAS  Google Scholar 

  66. Gruslin E, Descombes S, Psarropoulou C (1999) Epileptiform activity generated by endogenous acetylcholine during blockade of GABAergic inhibition in immature and adult rat hippocampus. Brain Res 835:290–297

    Article  PubMed  CAS  Google Scholar 

  67. Cavalheiro EA, Fernandes MJ, Turski L et al (1994) Spontaneous recurrent seizures in rats: amino acid and monoamine determination in the hippocampus. Epilepsia 35:1–11

    Article  PubMed  CAS  Google Scholar 

  68. Barnabi F, Cechetto DF (2001) Neurotransmitters in the thalamus relaying visceral input to the insular cortex in the rat. Am J Physiol Regul Integr Comp Physiol 281:1665–1674

    Google Scholar 

  69. Aronstam R, Martin D, Dennison R et al (1995) S-Nitrosylation m2 muscarinic receptor thiols disrupts receptor-G-protein coupling. Ann NY Acad Sci 757:215–217

    Article  PubMed  CAS  Google Scholar 

  70. Lipton SA, Choi YB, Pan ZH (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632

    Article  PubMed  CAS  Google Scholar 

  71. Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68

    Article  PubMed  CAS  Google Scholar 

  72. Okamura T, Ayajiki K, Fujioka H et al (2002) Neurogenic cerebral vasodilation mediated by nitric oxide. Jpn J Pharmacol 88:32–38

    Article  PubMed  CAS  Google Scholar 

  73. Hamel E (2004) Cholinergic modulation of the cortical microvascular bed. Prog Brain Res 145:171–178

    Article  PubMed  CAS  Google Scholar 

  74. Duncan R (1992) Epilepsy, cerebral blood flow, and cerebral metabolic rate. Cerebrovasc Brain Metab Rev 4:105–121

    PubMed  CAS  Google Scholar 

  75. Jensen MS, Yaari Y (1997) Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J Neurophysiol 77:1224–1233

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Mustafa Celik and Dr. Aydin Him for their help in proofreading the manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Hilmi Marangoz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marangoz, A.H., Yildirim, M., Ayyildiz, M. et al. The Interactions of Nitric Oxide and Acetylcholine on Penicillin-Induced Epilepsy in Rats. Neurochem Res 37, 1465–1474 (2012). https://doi.org/10.1007/s11064-012-0737-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0737-x

Keywords

Navigation