Neurochemical Research

, Volume 37, Issue 5, pp 1074–1084 | Cite as

Manganese and Ammonia Interactions in the Brain of Cirrhotic Rats: Effects on Brain Ammonia Metabolism

  • Susana Rivera-Mancía
  • Camilo Ríos
  • Sergio Montes
Original Paper


Hepatic encephalopathy is a major complication of cirrhosis. Ammonia and manganese have been associated with hepatic encephalopathy underlying mechanisms. Motor impairment and brain edema are common signs of hepatic encephalopathy. In the present study a model of liver damage in rats was combined with ammonia and manganese exposure to evaluate the role of these substances separately and their interactions on brain glutamine, water content and motor coordination. Additionally, we explored brain levels of each substance -Mn and ammonia- in the presence or absence of the other. Liver damage was induced by bile duct ligation. Rats were exposed to MnCl2 in drinking water (1 mg Mn/ml) and to ammonia in chow pellets containing 20% ammonium acetate (w/w). As expected, manganese and ammonia levels increased in the brain of cirrhotic rats exposed to these substances; in these animals, glutamine brain levels also increased and positively correlated with tissue water content in cortex. A three way-ANOVA showed that manganese favored ammonia and glutamine accumulation in brain, and possibly their subsequent deleterious effects, as evidenced by the fact that manganese and ammonia accumulation in the brain of cirrhotic rats severely affected motor function. These results suggest that even when controlling ammonia levels in cirrhotic patients, reduction of manganese intake is also a potential strategy to be considered in clinical practice.


Hepatic encephalopathy Manganese Ammonia Cirrhosis Brain edema Glutamine 



This work was financially supported by Consejo Nacional de Ciencia y Tecnología (CONACYT) grant No. 51541. S. Rivera-Mancía wants to thank the Biomedical Research Graduate Program, the Biomedical Research Institute and the National Autonomous University of Mexico for their support to carry out this work. Authors wish to thank Marisela Méndez-Armenta for liver histological preparations, Yessica Heras ans Rodolfo Pérez-Madrigal for their assistance in animal care and Elena Rivera-Mancía for reviewing this manuscript. S Rivera-Mancía receives a fellowship from CONACYT (203330). Instruments acquired with CONACYT grant 61327 were used to carry out this study.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Butterworth RF (2003) Hepatic encephalopathy. Alcohol Res Health 27:240–246PubMedGoogle Scholar
  2. 2.
    Butterworth RF (2008) Pathophysiology of hepatic encephalopathy: the concept of synergism. Hepatol Res 38(suppl.1):S116–S121Google Scholar
  3. 3.
    Jones EA, Weissenborn K (1997) Neurology and the liver. J Neurol Neurosurg Psychiatry 63:279–293PubMedCrossRefGoogle Scholar
  4. 4.
    Chrzanowska A, Gajewska B, Baranczyk-Kuzma A (2009) Arginase isoenzymes in human cirrhotic liver. Acta Biochim Pol 56:465–469PubMedGoogle Scholar
  5. 5.
    Schroeter JD, Nong A, Yoon M, Taylor MD, Dorman DC, Andersen ME, Clewell HJ 3rd (2011) Analysis of manganese tracer kinetics and target tissue dosimetry in monkeys and humans with multi-route physiologically-based pharmacokinetic models. Toxicol Sci 120:481–498PubMedCrossRefGoogle Scholar
  6. 6.
    Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310PubMedCrossRefGoogle Scholar
  7. 7.
    Aschner M, Vrana KE, Zheng W (1999) Manganese uptake and distribution in the central nervous system (CNS). Neurotoxicology 20:173–180PubMedGoogle Scholar
  8. 8.
    Aschner JL, Aschner M (2005) Nutritional aspects of manganese homeostasis. Mol Aspects Med 26:353–362PubMedCrossRefGoogle Scholar
  9. 9.
    Watanabe A, Takei N, Higashi T, Shiota T, Nakatsukasa H, Fujiwara M, Sakata T, Nagashima H (1984) Glutamic acid and glutamine levels in serum and cerebrospinal fluid in hepatic encephalopathy. Biochem Med 32:225–231PubMedCrossRefGoogle Scholar
  10. 10.
    Jalan R, Shawcross D, Davies N (2003) The molecular pathogenesis of hepatic encephalopathy. Int J Biochem Cell Biol 35:1175–1181PubMedCrossRefGoogle Scholar
  11. 11.
    Montes S, Alcaraz-Zubeldia M, Muriel P, Ríos C (2003) Role of manganese accumulation in increased brain glutamine of the cirrhotic rat. Neurochem Res 28:911–917PubMedCrossRefGoogle Scholar
  12. 12.
    Bender AS, Norenberg MD (1996) Effects of ammonia on l-glutamate uptake in cultured astrocytes. Neuchem Res 21:567–573CrossRefGoogle Scholar
  13. 13.
    Hazell AS, Norenberg MD (1997) Manganese decreases glutamate uptake in cultured astrocytes. Neuchem Res 22:1443–1447CrossRefGoogle Scholar
  14. 14.
    Panickar KS, Jayakumar AR, Rama Rao KV, Norenberg MD (2007) Downregulation of the 18-kDa translocator protein: effects on the ammonia-induced mitochondrial permeability transition and cell swelling in cultured astrocytes. Glia 55:1720–1727PubMedCrossRefGoogle Scholar
  15. 15.
    Rama Rao KV, Reddy PVB, Hazell AS, Norenberg MD (2007) Manganese induces cell swelling in cultured astrocytes. Neurotoxicology 28:807–812PubMedCrossRefGoogle Scholar
  16. 16.
    Hazell AS, Normandin L, Norenberg MD, Kennedy G, Ji JH (2006) Alzheimer type II astrocytic changes following sub-acute exposure to manganese and its prevention by antioxidant treatment. Neurosci Lett 396:167–171PubMedCrossRefGoogle Scholar
  17. 17.
    Norenberg MD (1987) The role of astrocytes in hepatic encephalopathy. Neurochem Pathol 6:13–33PubMedCrossRefGoogle Scholar
  18. 18.
    Jayakumar AR, Rao KVR, Kalaiselvi P, Norenberg MD (2004) Combined effects of ammonia and manganese on astrocytes in culture. Neurochem Res 29:2051–2056PubMedCrossRefGoogle Scholar
  19. 19.
    Norenberg M, Rama Rao KV, Jayakumar AR (2004) Ammonia neurotoxicity and the mitochondrial permeability transition. J Bioenerg Biomembr 36:303–307PubMedCrossRefGoogle Scholar
  20. 20.
    Rao KV, Norenberg MD (2004) Manganese induces the mitochondrial permeability transition in cultured astrocytes. J Biol Chem 279:32333–32338PubMedCrossRefGoogle Scholar
  21. 21.
    Montes S, Alcaraz-Zubeldia M, Ríos C, Muriel P (2002) A method to induce manganese accumulation in the brain of the cirrhotic rat and its evaluation. Brain Res Brain Res Protoc 9:9–15PubMedCrossRefGoogle Scholar
  22. 22.
    Jover R, Rodrigo R, Felipo V, Insausti R, Sáez-Valero J, García-Ayllón MS, Suárez I, Candela A, Compañ A, Esteban A, Cauli O, Ausó E, Rodríguez E, Gutiérrez A, Girona E, Erceg S, Berbel P, Pérez-Mateo M (2006) Brain edema and inflammatory activation in bile duct ligated rats with diet-induced hyperammonemia: a model of hepatic encephalopathy in cirrhosis. Hepatology 43:1257–1266PubMedCrossRefGoogle Scholar
  23. 23.
    Sponner RJ, Toseland PA, Goldberg DM (1975) The fluorometric determination of ammonia in protein-free filtrates of human blood plasma. Clin Chim Acta 65:47–55PubMedCrossRefGoogle Scholar
  24. 24.
    Marmarou A, Poll W, Shulman K, Bhagavan H (1978) A simple gravimetric technique for measurement of cerebral edema. J Neurosurg 49:530–537PubMedCrossRefGoogle Scholar
  25. 25.
    Chen SF, Hsu CW, Huang WH, Wang JY (2008) Post-injury baicalein improves histological and functional outcomes and reduces inflammatory cytokines after experimental traumatic brain injury. Br J Pharmacol 155:1279–1296PubMedCrossRefGoogle Scholar
  26. 26.
    Montgomery DC (2001) Design and analysis of experiments. Wiley, New YorkGoogle Scholar
  27. 27.
    Peneder TM, Scholze P, Berger ML, Reither H, Heinze G, Bertl J, Bauer J, Richfield EK, Hornykiewicz O, Pifl C (2011) Chronic exposure to manganese decreases striatal dopamine turnover in human alpha-synuclein transgenic mice. Neuroscience 180:280–292PubMedCrossRefGoogle Scholar
  28. 28.
    Hennenberg M, Trebicka J, Kohistani Z, Stark C, Nischalke HD, Kramer B, Korner C, Klein S, Granzow M, Fischer HP, Heller J, Sauerbruch T (2010) Hepatic and HSC-specific sorafenib effects in rats with established secondary biliary cirrhosis. Lab Invest 91:241–251PubMedCrossRefGoogle Scholar
  29. 29.
    Kountouras J, Billing BH, Scheuer PJ (1984) Prolonged bile duct obstruction: a new experimental model for cirrhosis in the rat. Br J Exp Pathol 65:305–311PubMedGoogle Scholar
  30. 30.
    Rivera-Mancia S, Montes S, Mendez-Armenta M, Muriel P, Rios C (2009) Morphological changes of rat astrocytes induced by liver damage but not by manganese chloride exposure. Metab Brain Dis 24:243–255PubMedCrossRefGoogle Scholar
  31. 31.
    Klos KJ, Ahlskog JE, Kumar N, Cambern S, Butz J, Burritt M, Fealey RD, Cowl CT, Parisi JE, Josephs KA (2006) Brain metal concentrations in chronic liver failure patients with pallidal T1 MRI hyperintensity. Neurology 67:1984–1989PubMedCrossRefGoogle Scholar
  32. 32.
    Pomier-Layrargues G, Spahr L, Butterworth RF (1995) Increased manganese concentrations in pallidum of cirrhotic patients. Lancet 345:735PubMedCrossRefGoogle Scholar
  33. 33.
    Ott P, Larsen FS (2004) Blood-brain barrier permeability to ammonia in liver failure: a critical reappraisal. Neurochem Int 44:185–198PubMedCrossRefGoogle Scholar
  34. 34.
    Nagaraja TN, Brookes N (1998) Intracellular acidification induced by passive and active transport of ammonium ions in astrocytes. Am J Physiol 274:C883–C891PubMedGoogle Scholar
  35. 35.
    Gagnon KB, England R, Delpire E (2006) Characterization of SPAK and OSR1, regulatory kinases of the Na-K-2Cl cotransporter. Mol Cell Biol 26:689–698PubMedCrossRefGoogle Scholar
  36. 36.
    Laubenberger J, Häussinger D, Bayer S, Gufler H, Hennig J, Langer M (1997) Proton magnetic resonance spectroscopy of the brain in symptomatic and asymptomatic patients with liver cirrhosis. Gastroenterology 112:1610–1616PubMedCrossRefGoogle Scholar
  37. 37.
    Jayakumar AR, Rao KV, Murthy C, Norenberg MD (2006) Glutamine in the mechanism of ammonia-induced astrocyte swelling. Neurochem Int 48:623–628PubMedCrossRefGoogle Scholar
  38. 38.
    Albrecht J, Zielinska M, Norenberg MD (2010) Glutamine as a mediator of ammonia neurotoxicity: a critical appraisal. Biochem Pharmacol 80:1303–1308PubMedCrossRefGoogle Scholar
  39. 39.
    Cordoba J, Alonso J, Rovira A, Jacas C, Sanpedro F, Castells L, Vargas V, Margarit C, Kulisewsky J, Esteban R, Guardia J (2001) The development of low-grade cerebral edema in cirrhosis is supported by the evolution of (1)H-magnetic resonance abnormalities after liver transplantation. J Hepatol 35:598–604PubMedCrossRefGoogle Scholar
  40. 40.
    Häussinger D, Kircheis G, Fischer R, Schliess F, vom Dahl S (2000) Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral edema? J Hepatol 32:1035–1038PubMedCrossRefGoogle Scholar
  41. 41.
    Poveda MJ, Bernabeu A, Concepcion L, Roa E, de Madaria E, Zapater P, Perez-Mateo M, Jover R (2010) Brain edema dynamics in patients with overt hepatic encephalopathy: a magnetic resonance imaging study. Neuroimage 52:481–487PubMedCrossRefGoogle Scholar
  42. 42.
    Yadav SK, Srivastava A, Srivastava A, Thomas MA, Agarwal J, Pandey CM, Lal R, Yachha SK, Saraswat VA, Gupta RK (2010) Encephalopathy assessment in children with extra-hepatic portal vein obstruction with MR, psychometry and critical flicker frequency. J Hepatol 52:348–354PubMedCrossRefGoogle Scholar
  43. 43.
    Spahr L, Vingerhoets F, Lazeyras F, Delavelle J, DuPasquier R, Giostra E, Mentha G, Terrier F, Hadengue A (2000) Magnetic resonance imaging and proton spectroscopic alterations correlate with parkinsonian signs in patients with cirrhosis. Gastroenterology 119:774–781PubMedCrossRefGoogle Scholar
  44. 44.
    Guilarte TR, Chen MK, McGlothan JL, Verina T, Wong DF, Zhou Y, Alexander M, Rohde CA, Syversen T, Decamp E, Koser AJ, Fritz S, Gonczi H, Anderson DW, Schneider JS (2006) Nigrostriatal dopamine system dysfunction and subtle motor deficits in manganese-exposed non-human primates. Exp Neurol 202:381–390PubMedCrossRefGoogle Scholar
  45. 45.
    Rodrigo R, Cauli O, Gomez-Pinedo U, Agusti A, Hernandez-Rabaza V, Garcia-Verdugo JM, Felipo V (2010) Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology 139:675–684PubMedCrossRefGoogle Scholar
  46. 46.
    Pentschew A, Ebner FF, Kovatch RM (1963) Experimental manganese encephalopathy in monkeys. J Neuropathol Exp Neurol 22:488–499PubMedCrossRefGoogle Scholar
  47. 47.
    Ponzoni S, Guimarães FS, Del Bel EA, Garcia-Cairasco N (2000) Behavioral effects of intra-nigral microinjections of manganese chloride: interaction with nitric oxide. Prog Neuropsychopharmacol Biol Psychiatry 24:307–325PubMedCrossRefGoogle Scholar
  48. 48.
    Witholt R, Gwiazda RH, Smith DR (2000) The neurobehavioral effects of subchronic manganese exposure in the presence and absence of pre-parkinsonism. Neurotoxicol Teratol 22:851–861PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Susana Rivera-Mancía
    • 1
  • Camilo Ríos
    • 1
  • Sergio Montes
    • 1
  1. 1.Department of NeurochemistryNational Institute of Neurology and Neurosurgery ‘Manuel Velasco Suárez’La Fama, Tlalpan, Mexico CityMexico

Personalised recommendations