Skip to main content

Advertisement

Log in

Neuronal Damage Using Fluoro-Jade B Histofluorescence and Gliosis in the Striatum After Various Durations of Transient Cerebral Ischemia in Gerbils

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ischemic damage occurs well in vulnerable regions of the brain, including the hippocampus and striatum. In the present study, we examined neuronal damage/death and glial changes in the striatum 4 days after 5, 10, 15 and 20 min of transient cerebral ischemia using the gerbil. Spontaneous motor activity was increased with the duration time of ischemia–reperfusion (I-R). To examine neuronal damage, we used Fluoro-Jade B (F-J B, a marker for neuronal degeneration) histofluorescence staining. F-J B positive cells were detected only in the 20 min ischemia-group, not in the other groups. In addition, we examined gliosis of astrocytes and microglia using anti-glial fibrillary acidic protein (GFAP) and anti- ionized calcium-binding adapter molecule 1 (Iba-1), respectively. In the 5 min ischemia-group, GFAP-immunoreactive astrocytes were distinctively increased in number, and the immunoreactivity was stronger than that in the sham-group. In the 10, 15 and 20 min ischemia-groups, GFAP-immunoreactivity was more increased with the duration of I-R. On the other hand, the immunoreactivity and the number of Iba-1-immunoreactive microglia were distinctively increased in the 5 and 10 min ischemia-groups. In the 15 min ischemia-group, cell bodies of microglia were largest, and the immunoreactivity was highest; however, in the 20 min ischemia-group, the immunoreactivity was low compared to the 15 min ischemia-group. The results of western blotting for GFAP and Iba-1 were similar to the immunohistochemical data. In brief, these findings showed that neuronal death could be detected only in the 20 min ischemia-group 4 days after I-R, and the change pattern of astrocytes and microglia were apparently different according to the duration time of I-R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Belayev L, Busto R, Zhao W et al (1999) Middle cerebral artery occlusion in the mouse by intraluminal suture coated with poly-l-lysine: neurological and histological validation. Brain Res 833:181–190

    Article  PubMed  CAS  Google Scholar 

  2. Hu Z, Zeng L, Xie L et al (2007) Morphological alteration of Golgi apparatus and subcellular compartmentalization of TGF-beta1 in Golgi apparatus in gerbils following transient forebrain ischemia. Neurochem Res 32:1927–1931

    Article  PubMed  CAS  Google Scholar 

  3. Kirino T, Tamura A, Sano K (1984) Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol 64:139–147

    Article  PubMed  CAS  Google Scholar 

  4. Schmidt-Kastner R, Ophoff BG, Hossmann KA (1990) Pattern of neuronal vulnerability in the cat hippocampus after one hour of global cerebral ischemia. Acta Neuropathol 79:444–455

    Article  PubMed  CAS  Google Scholar 

  5. Bederson JB, Pitts LH, Tsuji M et al (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17:472–476

    Article  PubMed  CAS  Google Scholar 

  6. Cheng FC, Wang J, Yang DY (2000) A dual-probe microdialysis study in simultaneously monitoring extracellular pyruvate, lactate, and biogenic amines in gerbil striata during unilateral cerebral ischemia. Neurochem Res 25:1089–1094

    Article  PubMed  CAS  Google Scholar 

  7. Longa EZ, Weinstein PR, Carlson S et al (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Article  PubMed  CAS  Google Scholar 

  8. Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272

    Article  PubMed  CAS  Google Scholar 

  9. Ordy JM, Wengenack TM, Bialobok P et al (1993) Selective vulnerability and early progression of hippocampal CA1 pyramidal cell degeneration and GFAP-positive astrocyte reactivity in the rat four-vessel occlusion model of transient global ischemia. Exp Neurol 119:128–139

    Article  PubMed  CAS  Google Scholar 

  10. Pennypacker KR, Hernandez H, Benkovic S et al (1999) Induction of presenilins in the rat brain after middle cerebral arterial occlusion. Brain Res Bull 48:539–543

    Article  PubMed  CAS  Google Scholar 

  11. Zhang Z, Zhang RL, Jiang Q et al (1997) A new rat model of thrombotic focal cerebral ischemia. J Cereb Blood Flow Metab 17:123–135

    Article  PubMed  Google Scholar 

  12. Block F (1999) Global ischemia and behavioural deficits. Prog Neurobiol 58:279–295

    Article  PubMed  CAS  Google Scholar 

  13. Schmidt-Kastner R, Freund TF (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40:599–636

    Article  PubMed  CAS  Google Scholar 

  14. Kirino T, Sano K (1984) Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol 62:201–208

    Article  PubMed  CAS  Google Scholar 

  15. Kiss JP, Zsilla G, Vizi ES (2004) Inhibitory effect of nitric oxide on dopamine transporters: interneuronal communication without receptors. Neurochem Int 45:485–489

    Article  PubMed  CAS  Google Scholar 

  16. Yoshioka H, Niizuma K, Katsu M et al (2011) Consistent injury to medium spiny neurons and white matter in the mouse striatum after prolonged transient global cerebral ischemia. J Neurotrauma 28:649–660

    Article  PubMed  Google Scholar 

  17. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498

    Article  PubMed  CAS  Google Scholar 

  18. Crain BJ, Westerkam WD, Harrison AH et al (1988) Selective neuronal death after transient forebrain ischemia in the Mongolian gerbil: a silver impregnation study. Neuroscience 27:387–402

    Article  PubMed  CAS  Google Scholar 

  19. Terashima T, Namura S, Hoshimaru M et al (1998) Consistent injury in the striatum of C57BL/6 mice after transient bilateral common carotid artery occlusion. Neurosurgery 43:900–907 Discussion 907–908

    Article  PubMed  CAS  Google Scholar 

  20. Yan BC, Choi JH, Yoo KY et al (2011) Leptin’s neuroprotective action in experimental transient ischemic damage of the gerbil hippocampus is linked to altered leptin receptor immunoreactivity. J Neurol Sci 303:100–108

    Article  PubMed  CAS  Google Scholar 

  21. Candelario-Jalil E, Alvarez D, Merino N et al (2003) Delayed treatment with nimesulide reduces measures of oxidative stress following global ischemic brain injury in gerbils. Neurosci Res 47:245–253

    Article  PubMed  CAS  Google Scholar 

  22. Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130

    Article  PubMed  CAS  Google Scholar 

  23. Cho AK, Melega WP, Kuczenski R et al (1999) Caudate-putamen dopamine and stereotypy response profiles after intravenous and subcutaneous amphetamine. Synapse 31:125–133

    Article  PubMed  CAS  Google Scholar 

  24. Gong W, Neill DB, Lynn M et al (1999) Dopamine D1/D2 agonists injected into nucleus accumbens and ventral pallidum differentially affect locomotor activity depending on site. Neuroscience 93:1349–1358

    Article  PubMed  CAS  Google Scholar 

  25. Braida D, Pozzi M, Sala M (2000) CP 55, 940 protects against ischemia-induced electroencephalographic flattening and hyperlocomotion in Mongolian gerbils. Neurosci Lett 296:69–72

    Article  PubMed  CAS  Google Scholar 

  26. Araki H, Yamamoto T, Kobayashi Y et al (2002) Effect of methamphetamine and imipramine on cerebral ischemia-induced hyperactivity in Mongolian gerbils. Jpn J Pharmacol 88:293–299

    Article  PubMed  CAS  Google Scholar 

  27. Colbourne F, Auer RN, Sutherland GR (1998) Characterization of postischemic behavioral deficits in gerbils with and without hypothermic neuroprotection. Brain Res 803:69–78

    Article  PubMed  CAS  Google Scholar 

  28. Katsuta K, Umemura K, Ueyama N et al (2003) Pharmacological evidence for a correlation between hippocampal CA1 cell damage and hyperlocomotion following global cerebral ischemia in gerbils. Eur J Pharmacol 467:103–109

    Article  PubMed  CAS  Google Scholar 

  29. Restivo L, Middei S, Mingfu L et al (2004) Potentiation of ischemia-related behavioral alterations by electro-acupuncture in gerbils. Funct Neurol 19:19–23

    PubMed  Google Scholar 

  30. Boor PJ, Reynolds ES (1977) A simple planimetric method for determination of left ventricular mass and necrotic myocardial mass in postmortem hearts. Am J Clin Pathol 68:387–392

    PubMed  CAS  Google Scholar 

  31. Cox JL, McLaughlin VW, Flowers NC et al (1968) The ischemic zone surrounding acute myocardial infarction. Its morphology as detected by dehydrogenase staining. Am Heart J 76:650–659

    Article  PubMed  CAS  Google Scholar 

  32. Popp A, Jaenisch N, Witte OW et al (2009) Identification of ischemic regions in a rat model of stroke. PLoS One 4:e4764

    Article  PubMed  Google Scholar 

  33. Nachlas MM, Shnitka TK (1963) Macroscopic identification of early myocardial infarcts by alterations in dehydrogenase activity. Am J Pathol 42:379–405

    PubMed  CAS  Google Scholar 

  34. Ito U, Spatz M, Walker JT Jr et al (1975) Experimental cerebral ischemia in mongolian gerbils. I. Light microscopic observations. Acta Neuropathol 32:209–223

    Article  PubMed  CAS  Google Scholar 

  35. Kirino T (2000) Delayed neuronal death. Neuropathology 20(Suppl):S95–S97

    Article  PubMed  Google Scholar 

  36. Giulian D, Vaca K (1993) Inflammatory glia mediate delayed neuronal damage after ischemia in the central nervous system. Stroke 24:I84–I90

    Article  PubMed  CAS  Google Scholar 

  37. Ridet JL, Malhotra SK, Privat A et al (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  PubMed  CAS  Google Scholar 

  38. Balasingam V, Yong VW (1996) Attenuation of astroglial reactivity by interleukin-10. J Neurosci 16:2945–2955

    PubMed  CAS  Google Scholar 

  39. Smith GM, Hale JH (1997) Macrophage/Microglia regulation of astrocytic tenascin: synergistic action of transforming growth factor-beta and basic fibroblast growth factor. J Neurosci 17:9624–9633

    PubMed  CAS  Google Scholar 

  40. Yong VW, Moumdjian R, Yong FP et al (1991) Gamma-interferon promotes proliferation of adult human astrocytes in vitro and reactive gliosis in the adult mouse brain in vivo. Proc Natl Acad Sci USA 88:7016–7020

    Article  PubMed  CAS  Google Scholar 

  41. Kraig RP, Dong LM, Thisted R et al (1991) Spreading depression increases immunohistochemical staining of glial fibrillary acidic protein. J Neurosci 11:2187–2198

    PubMed  CAS  Google Scholar 

  42. Lascola C, Kraig RP (1997) Astroglial acid-base dynamics in hyperglycemic and normoglycemic global ischemia. Neurosci Biobehav Rev 21:143–150

    Article  PubMed  CAS  Google Scholar 

  43. Matsushima K, Schmidt-Kastner R, Hogan MJ et al (1998) Cortical spreading depression activates trophic factor expression in neurons and astrocytes and protects against subsequent focal brain ischemia. Brain Res 807:47–60

    Article  PubMed  CAS  Google Scholar 

  44. Hashimoto M, Nitta A, Fukumitsu H et al (2005) Involvement of glial cell line-derived neurotrophic factor in activation processes of rodent macrophages. J Neurosci Res 79:476–487

    Article  PubMed  CAS  Google Scholar 

  45. Laurenzi MA, Arcuri C, Rossi R et al (2001) Effects of microenvironment on morphology and function of the microglial cell line BV-2. Neurochem Res 26:1209–1216

    Article  PubMed  CAS  Google Scholar 

  46. Hailer NP, Jarhult JD, Nitsch R (1996) Resting microglial cells in vitro: analysis of morphology and adhesion molecule expression in organotypic hippocampal slice cultures. Glia 18:319–331

    Article  PubMed  CAS  Google Scholar 

  47. Schwartz M, Butovsky O, Bruck W et al (2006) Microglial phenotype: is the commitment reversible? Trends Neurosci 29:68–74

    Article  PubMed  CAS  Google Scholar 

  48. Mabuchi T, Kitagawa K, Ohtsuki T et al (2000) Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke 31:1735–1743

    Article  PubMed  CAS  Google Scholar 

  49. Stoll G, Jander S, Schroeter M (1998) Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 56:149–171

    Article  PubMed  CAS  Google Scholar 

  50. Sugawara T, Lewen A, Noshita N et al (2002) Effects of global ischemia duration on neuronal, astroglial, oligodendroglial, and microglial reactions in the vulnerable hippocampal CA1 subregion in rats. J Neurotrauma 19:85–98

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Seok Han, Mr. Seung Uk Lee and Ms. Hyun Sook Kim for their technical help in this study. This work was supported by this work was supported by Rural Development Administration of Agenda project (PJ008261), Korea, and by 2011 Research Grant from Kangwon National University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moo-Ho Won or Jun Hwi Cho.

Additional information

Taek Geun Ohk and Ki-Yeon Yoo contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohk, T.G., Yoo, KY., Park, S.M. et al. Neuronal Damage Using Fluoro-Jade B Histofluorescence and Gliosis in the Striatum After Various Durations of Transient Cerebral Ischemia in Gerbils. Neurochem Res 37, 826–834 (2012). https://doi.org/10.1007/s11064-011-0678-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0678-9

Keywords

Navigation