Advertisement

Neurochemical Research

, Volume 37, Issue 4, pp 708–721 | Cite as

Protective Role of Quercetin on PCBs-Induced Oxidative Stress and Apoptosis in Hippocampus of Adult Rats

  • Kandaswamy Selvakumar
  • Senthamilselvan Bavithra
  • Muralidharan Suganthi
  • Chellakan Selvanesan Benson
  • Perumal Elumalai
  • Ramachandran Arunkumar
  • Gunasekaran Krishnamoorthy
  • Prabhu Venkataraman
  • Jagadeesan Arunakaran
Original Paper

Abstract

Polychlorinated biphenyls (PCBs) exposure produces neurodegeneration and induces oxidative stress. Neuroprotective role of quercetin, on PCBs induced apoptosis in hippocampus has not yet been studied. The present study is focused to see whether quercetin supplementation precludes against PCBs induced oxidative stress and hippocampal apoptosis. The results have shown that quercetin at 50 mg/kg bwt/30 days has protected oxidative stress in hippocampus of adult male rats. Quercetin, a free radical scavenger decreased the levels of oxidative stress markers in the hippocampus of simultaneous PCB+quercetin treated rats. The pro-apoptotic and anti-apoptotic molecules such as Bad, Bid, Bax and Bcl2 were altered in the hippocampus of experimental animals. PCBs increased the DNA damage and induced neurodegeneration were assessed by histological studies. PCB induced ROS may be linked to increased hippocampal neuronal apoptosis. Quercetin supplementation decreased the neuronal damage and scavenged the free radicals induced by PCBs and protects PCBs induced apoptosis and oxidative stress.

Keywords

Apoptosis Hippocampus PCB-polychlorinated biphenyls Quercetin 

Notes

Acknowledgments

The financial assistance to Mr. K. Selvakumar, Department of Endocrinology from UGC RFSMS programme, New Delhi is gratefully acknowledged.

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the authorship and/or publication of this article.

References

  1. 1.
    Hornbuckle KC, Carlson DL, Swackhamer DL et al (2006) Polychlorinated biphenyls in the Great Lakes. In: Hites RA (ed) The handbook of environmental chemistry: persistent organic pollutants in the Great Lakes. Springer, Berlin, pp 13–70CrossRefGoogle Scholar
  2. 2.
    Park JS, Linderholm L, Charles MJ et al (2007) Polychlorinated biphenyls and their hydroxylated metabolites (OH-PCBS) in pregnant women from eastern Slovakia. Environ Health Perspect 115:20–27PubMedCrossRefGoogle Scholar
  3. 3.
    Korrick SA, Sagiv SK (2008) Polychlorinated biphenyls, organochlorine pesticides and neurodevelopment. Curr Opin Pediatr 20:198–204PubMedCrossRefGoogle Scholar
  4. 4.
    Mariussen E, Fonnum F (2006) Neurochemical targets and behavioral effects of organohalogen compounds: an update. Crit Rev Toxicol 36:253–289PubMedCrossRefGoogle Scholar
  5. 5.
    Pessah IN, Cherednichenko G, Lein PJ (2010) Minding the calcium store: Ryanodine receptor activation as a convergent mechanism of PCB toxicity. Pharmacol Ther 125:260–285PubMedCrossRefGoogle Scholar
  6. 6.
    Martin LJ (2011) Neuronal cell death in nervous system development, disease, and injury (review). Int J Mol Med 7:455–478Google Scholar
  7. 7.
    White LD, Barone S Jr (2011) Qualitative and quantitative estimates of apoptosis from birth to senescence in the rat brain. Cell Death Differ 8:345–356CrossRefGoogle Scholar
  8. 8.
    Haddad JJ (2004) Redox and oxidant-mediated regulation of apoptosis signaling pathways: immuno-pharmaco-redox conception of oxidative siege versus cell death commitment. Int Immunopharmacol 4:475–493PubMedCrossRefGoogle Scholar
  9. 9.
    Sanchez-Alonso JA, Lopez-Aparicio P, Recio MN et al (2004) Polychlorinated biphenyl mixtures (Aroclors) induce apoptosis via Bcl-2, Bax and caspase-3 proteins in neuronal cell cultures. Toxicol Lett 153:311–326PubMedCrossRefGoogle Scholar
  10. 10.
    Dreiem A, Rykken S, Lehmler HJ et al (2009) Hydroxylated polychlorinated biphenyls increase reactive oxygen species formation and induce cell death in cultured cerebellar granule cells. Toxicol Appl Pharmacol 240:306–313PubMedCrossRefGoogle Scholar
  11. 11.
    Mariussen E, Myhre O, Reistad T et al (2002) The polychlorinated biphenyl mixture aroclor 1254 induces death of rat cerebellar granule cells: the involvement of the N-methyl-D-aspartate receptor and reactive oxygen species. Toxicol Appl Pharmacol 179:137–144PubMedCrossRefGoogle Scholar
  12. 12.
    Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nature Rev Can 2:647–656CrossRefGoogle Scholar
  13. 13.
    Howard AS, Fitzpatrick R, Pessah I et al (2003) Polychlorinated biphenyls induce caspase-dependent cell death in cultured embryonic rat hippocampal but not cortical neurons via activation of the ryanodine receptor. Toxicol Appl Pharmacol 190:72–86PubMedCrossRefGoogle Scholar
  14. 14.
    Antonsson B, Conti F, Ciavatta A et al (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277:370–372PubMedCrossRefGoogle Scholar
  15. 15.
    Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501PubMedCrossRefGoogle Scholar
  16. 16.
    Hengertner MO (2000) The biochemistry of apoptosis. Nature 407:770–776CrossRefGoogle Scholar
  17. 17.
    Pawlikowska-Pawlega B, Guszecki WI, Misiak LE et al (2003) The study of the quercetin action on human erythrocyte membranes. Biochem Pharmacol 66:605–612PubMedCrossRefGoogle Scholar
  18. 18.
    Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects and safety. Ann Rev Nut 22:19–34CrossRefGoogle Scholar
  19. 19.
    Pu F, Mishima K, Irie K et al (2007) Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. J Pharmacol Sci 104:329–334PubMedCrossRefGoogle Scholar
  20. 20.
    Huk I, Brovkovich V, Nanobash VJ et al (1998) Bioflavonoid quercetin scavenges superoxide and increases nitric oxide concentration in ischaemia-reperfusion injury: an experimental study. British J Sur 85:1080–1085CrossRefGoogle Scholar
  21. 21.
    Erden Inal M, Kahraman A (2000) The protective effect of flavonol quercetin against ultraviolet A induced oxidative stress in rats. Toxicology 154:21–29PubMedCrossRefGoogle Scholar
  22. 22.
    Duarte J, Galisteo M, Ocete MA et al (2001) Effect of chronic quercetin treatment on hepatic oxidative status in spontaneously hypertensive rats. Mol Cell Biochem 221:155–160PubMedCrossRefGoogle Scholar
  23. 23.
    Peres W, Tuñón MJ, Mato S et al (2000) Hepatoprotective effects of the flavonoid quercetin in rats with biliary obstruction. J Hepatol 33:742–750PubMedCrossRefGoogle Scholar
  24. 24.
    Wadsworth TL, Koop DR (2001) Effects of Gingko biloba extract (Egb 761) and quercetin on lipopolysaccharide-induced release of nitric oxide. Chemico-Biol Interact 137:43–58CrossRefGoogle Scholar
  25. 25.
    Yang K, Lamprecht SA, Liu Y et al (2000) Chemoprevention studies of the flavonoids quercetin and rutin in normal and azoxymethane-treated mouse colon. Carcinogenesis 21:1655–1660PubMedCrossRefGoogle Scholar
  26. 26.
    Vijayababu MR, Kanagaraj P, Arunkumar A et al (2006) Quercetin induces p53-independent apoptosis in human prostate cancer cells by modulating Bcl-2-related proteins: a possible mediation by IGFBP-3. Oncol Res 16:67–74PubMedGoogle Scholar
  27. 27.
    Senthilkumar K, Elumalai P et al (2010) Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3). Mol Cell Biochem 1–2:173–184CrossRefGoogle Scholar
  28. 28.
    Senthilkumar K, Arunkumar R, Elumalai P et al (2011) Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3). Cell Biochem Func 2:87–95CrossRefGoogle Scholar
  29. 29.
    Sun SW, Yu HQ, Zhang H et al (2007) Quercetin attenuates spontaneous behavior and special memory impairment in D-galactose treated mice by increasing brain antioxidant capacity. Nut Res 27:169–175CrossRefGoogle Scholar
  30. 30.
    Venkataraman P, Selvakumar K, Krishnamoorthy G et al (2010) Effect of melatonin on PCB (Aroclor 1254) induced neuronal damage and changes in Cu/Zn superoxide dismutase and glutathione peroxidase-4 mRNA expression in cerebral cortex, cerebellum and hippocampus of adult rats. Neurosci Res 66:189–197PubMedCrossRefGoogle Scholar
  31. 31.
    Pick E, Keisari Y (1981) Superoxide anion and H2O2 production by chemically elicited peritoneal macrophages-induction by multiple nonphagocytic stimuli. Cell Immunol 59:301–318PubMedCrossRefGoogle Scholar
  32. 32.
    Devasagayam TP, Tarachand U (1987) Decreased lipid peroxidation in rat kidneys during gestation. Biochem Biophy Res Comm 145:134–138CrossRefGoogle Scholar
  33. 33.
    Levine RL, Williams JA, Stadtman ER et al (1994) Carbonyl assays for determination of oxidatively modified proteins. Met Enzymol 233:346–357CrossRefGoogle Scholar
  34. 34.
    Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction. Anal Biochem 162:156–159PubMedCrossRefGoogle Scholar
  35. 35.
    Lowry OH, Risebrough NJ, Farr AL et al (1951) Protein measurement with Folin phenol reagent. J Cell Biol 193:265–270Google Scholar
  36. 36.
    Mariussen E, Myhre O, Reistad T et al (2002) The polychlorinated biphenyl mixture aroclor 1254 induces death of rat cerebellar granule cells: the involvement of the N-methyl-D-aspartate receptor and reactive oxygen species. Toxicol App Pharmacol 179:137–144CrossRefGoogle Scholar
  37. 37.
    Schlezinger JJ, White RD, Slegemann JJ (1999) Oxidative inactivation of cytochrome P450 1A (CYP1A) stimulated by 3, 3′, 4, 4′–tetrachlorobiphenyl: production of reactive oxygen by vertebrate CYP1As. Mol Pharmacol 56:588–597PubMedGoogle Scholar
  38. 38.
    McLean MR, Twaroski TP, Robertson LW (2000) Redox cycling of 2-(x’mono,-di,-trichlorophenyl)-1, 4benzoquinones, oxidation products of polychlorinated biphenyls. Arch Biochem Biophy 376:449–455CrossRefGoogle Scholar
  39. 39.
    Hochstein P, Ernster L (1963) ADP-activated lipid peroxidation coupled to the TPNH oxidase system of microsomes. Biochem Biophy Res Comm 12:388–394CrossRefGoogle Scholar
  40. 40.
    Kasai H, Crain PF, Kuchino Y et al (1986) Formation of 8-hydroxy- guanine moiety in cellular DNA by agents producing oxygen radical and evidence for its repair. Carcinogenesis 7:1849–1851PubMedCrossRefGoogle Scholar
  41. 41.
    Griffith HR, Unswoth J, Blake DR et al (1988) Oxidation of amino acids within serum proteins. In: Rice-Evans (ed) Free radicals: chemistry. Pathology and Medicine Richeliue, London, pp 439–454Google Scholar
  42. 42.
    Sridhar M, Venkataraman P, Dhanammal S et al (2004) Impact of polychlorinated biphenyl (Aroclor 1254) and vitamin C on antioxidant system of rat ventral prostate. Asian J Androl 1:19–22Google Scholar
  43. 43.
    Krishnamoorthy G, Murugesan P, Muthuvel R et al (2005) Effect of Aroclor 1254 on Sertoli cellular antioxidant system, androgen binding protein and lactate in adult rat in vitro. Toxicology 212:195–205PubMedCrossRefGoogle Scholar
  44. 44.
    Murugesan P, Kanagaraj P, Yuvaraj S et al (2005) The inhibitory effects of polychlorinated biphenyl Aroclor 1254 on Leydig cell LH receptors, steroidogenic enzymes and antioxidant enzymes in adult rats. Rep Toxicol 20:117–126CrossRefGoogle Scholar
  45. 45.
    Venkataraman P, Muthuvel R, Krishnamoorthy G et al (2007) PCB (Aroclor 1254) enhances oxidative damage in rat brain regions: protective role of ascorbic acid. Neurotoxicology 28:490–498PubMedCrossRefGoogle Scholar
  46. 46.
    Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Met Enzymol 233:357–363CrossRefGoogle Scholar
  47. 47.
    Johnson MK, Loo G (2000) Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA. Mutat Res 459:211–218PubMedGoogle Scholar
  48. 48.
    Twaroski TP, O’Brien ML, Robertson LW (2001) Effects of selected polychlorinated biphenyl (PCB) congeners on hepatic glutathione, glutathione-related enzymes, and selenium status: implications or oxidative stress. Biochem Pharmacol 62:273–281PubMedCrossRefGoogle Scholar
  49. 49.
    Kass GE, Orrenius S (1999) Calcium signaling and cytotoxicity. Environ Health Persp 107:25–35Google Scholar
  50. 50.
    Tilson HA, Kodavanti PR (1998) The neurotoxicity of polychlorinated biphenyls. Neurotoxicology 19:571–576Google Scholar
  51. 51.
    Baliga BC, Kumar S (2002) Role of Bcl-2 family of proteins in malignancy. Hematol Oncol 20:63–74PubMedCrossRefGoogle Scholar
  52. 52.
    Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Gen Develop 13:1899–1911CrossRefGoogle Scholar
  53. 53.
    Kreuz S, Siegmund D, Rumpf JJ et al (2004) NFkappaB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP. J Cell Biol 166:369–380PubMedCrossRefGoogle Scholar
  54. 54.
    Kaur P, Kaur G, Bansal MP (2006) Tertiary-butyl hydroperoxide induced oxidative stress and male reproductive activity in mice: role of transcription factor NF-kappaB and testicular antioxidant enzymes. Reprod Toxicol 22:479–484PubMedCrossRefGoogle Scholar
  55. 55.
    Hofmann MA, Schiekofer S, Isermann B et al (1999) Peripheral blood mononuclear cells isolated from patients with diabetic nephropathy show increased activation of the oxidative stress-sensitive transcription factor NF-kB. Diabetologia 42:222–232PubMedCrossRefGoogle Scholar
  56. 56.
    Peet GW, Li J (1999) I KappaB kinases alpha and beta show a random sequential kinetic mechanism and are inhibited by staurosporin and quercetin. J Biol Chem 274:32655–32661PubMedCrossRefGoogle Scholar
  57. 57.
    Sánchez-Alonso JA, López-Aparicio P, Recio MN et al (2004) Polychlorinated biphenyl mixtures (Aroclors) induce apoptosis via Bcl-2, Bax and caspase-3 proteins in neuronal cell cultures. Toxicol Lett 153:311–326PubMedCrossRefGoogle Scholar
  58. 58.
    Venkataraman P, Selvakumar K, Krishnamoorthy G et al (2010) Effect of melatonin on PCB (Aroclor 1254) induced neuronal damage and changes in Cu/Zn superoxide dismutase and glutathione peroxidase-4 mRNA expression in cerebral cortex, cerebellum and hippocampus of adult rats. Neurosci Res 66:189–197PubMedCrossRefGoogle Scholar
  59. 59.
    Nagata S (1999) Fas ligand-induced apoptosis. Ann Rev Gene 33:29–55CrossRefGoogle Scholar
  60. 60.
    Gurel A, Coskun O, Armutcu F et al (2005) Vitamin E against oxidative damage caused by formaldehyde in frontal cortex and hippocampus: biochemical and histological studies. J Chem Neuroanat 29:173–178PubMedCrossRefGoogle Scholar
  61. 61.
    Jovanovic SV, Steenkan S, Simic MG et al (1998) Antioxidant properties of flavonoids: reduction potentials and electron transfer reactions of flavonoid radicals. In: Rice Evans C, Packer L (eds) Flavonoids in health and disease. Marcel Dekker, New York, pp 137–161Google Scholar
  62. 62.
    Kawada N, Seki S, Inoue M et al (1998) Effect of antioxidants, resveratrol, quercetin, and N-acetylcysteine, on the functions of cultured rat hepatic stellate cells and Kupffer cells. Hepatology 27:1265–1274PubMedCrossRefGoogle Scholar
  63. 63.
    Huk I, Brovkovich V, Nanobash VJ et al (1998) Bioflavonoid quercetin scavenges superoxide and increases nitric oxide concentration in ischaemia-reperfusion injury: an experimental study. British J Surg 85:1080–1085CrossRefGoogle Scholar
  64. 64.
    Kumar P, Sharma S, Khanna M et al (2003) Effect of quercetin on lipid peroxidation and changes in lung morphology in experimental influenza virus infection. Int J Exp Pathol 3:127–133CrossRefGoogle Scholar
  65. 65.
    Gschwendt M, Horn F, Kittstein W et al (1983) Inhibition of the calcium- and phospholipid-dependent protein kinase activity from mouse brain cytosol by quercetin. Biochem Biophy Res Comm 117:444–447CrossRefGoogle Scholar
  66. 66.
    Nishino H, Nishino A, Iwashima A et al (1984) Quercetin interacts with cadmodulin, a calcium regulatory protein. Experientia 40:184–185PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kandaswamy Selvakumar
    • 1
  • Senthamilselvan Bavithra
    • 1
  • Muralidharan Suganthi
    • 1
  • Chellakan Selvanesan Benson
    • 1
  • Perumal Elumalai
    • 1
  • Ramachandran Arunkumar
    • 1
  • Gunasekaran Krishnamoorthy
    • 2
  • Prabhu Venkataraman
    • 3
  • Jagadeesan Arunakaran
    • 1
  1. 1.Department of Endocrinology, Dr. ALM. Post Graduate Institute of Basic Medical SciencesUniversity of MadrasTaramani, ChennaiIndia
  2. 2.Department of BiochemistryAsan Memorial Dental College & HospitalAsan Nagar, ChengalpattuIndia
  3. 3.Department of Medical ResearchSRM UniversityKattankulathurIndia

Personalised recommendations