Skip to main content
Log in

Presence of Phosphatidylserine Synthesizing Enzymes in Triton Insoluble Floating Fractions from Cerebrocortical Plasma Membranes

Do Phosphatidylserine Synthesizing Enzymes in Plasma Membrane Microdomains Play a Role in Signal Transduction?

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Mammals synthesize phosphatidylserine (PS), a binding PKC molecule, by exchanging the nitrogen base of phosphatidylethanolamine or phosphatidylcholine with free serine. Serine base exchange enzyme (SBEE) was found in Triton insoluble floating fractions (TIFFs) from rat cerebellum which contained PKC. Consequently, SBEE might modulate PS levels in the PKC binding area (Buratta et al., J Neurochem 103:942–951, 2007). In the present study, we determined whether SBEE and PKC were localised in rat cerebral cortex TIFFs (cx-TIFFs) and in rat cerebrocortical plasma membrane-TIFFs (PM-TIFFs) which are more directly involved in signal transduction than intracellular membranes. Cx-and PM-TIFFs expressed SBEE activity and contained PKC. SBEE used ethanolamine as free exchanging base which may modulate PS level in the PKC binding area, transforming PS into PE and vice versa. The slight decrease in [14C]serine incorporation in the presence of choline indicated the existence of a SBEE isoform which may play a peculiar role in this brain area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 9:484–496

    PubMed  CAS  Google Scholar 

  2. Sakane F, Yamada K, Imai S et al (1991) Porcine 80-kDa diacylglycerol kinase is a calcium-binding and calcium/phospholipid-dependent enzyme and undergoes calcium-dependent translocation. J. Biol. Chem. 266:7096–7100

    PubMed  CAS  Google Scholar 

  3. Ghosh S, Strum JC, Sciorra VA et al (1996) Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells. J. Biol. Chem 271:8472–8480

    CAS  Google Scholar 

  4. Wu Y, Tibrewal N, Birge RB (2006) Phosphatidylserine recognition by phagocytes: a view to a kill. Trends Cell Biol 16:189–197

    Article  PubMed  CAS  Google Scholar 

  5. Mozzi R, Buratta S, Goracci G (2003) Metabolism and functions of phosphatidylserine in mammalian brain. Neurochem Res 28:195–214

    Article  PubMed  CAS  Google Scholar 

  6. Mozzi R, Buratta S (2009) Brain phosphatidylserine: metabolism and functions. Handbook of neurochemistry and molecular neurobiology: neural lipids, 3rd edn. Springer, Berlin, pp 39–57

    Google Scholar 

  7. Vance JE, Steenbergen R (2005) Metabolism and function of phosphatidylserine. Prog Lip Res 44:207–234

    Article  CAS  Google Scholar 

  8. Foster AC, Fagg GE, Harris EW et al (1982) Regulation of glutamate receptors: possible role of phosphatidylserine. Brain Res 242:374–377

    Article  PubMed  CAS  Google Scholar 

  9. Gagne J, Giguere C, Tocco G et al (1996) Effect of phosphatidylserine on the binding properties of glutamate receptors in brain sections from adult and neonatal rats. Brain Res 740:337–345

    Article  PubMed  CAS  Google Scholar 

  10. Levi de Stain M, Medina JH, De Robertis E (1989) In vivo and in vitro modulation of central type benzodiazepine receptors by phosphatidylserine. Brain Res Mol Brain Res 5:9–15

    Google Scholar 

  11. Shinji N, Tahara Y, Hagiwara E et al (2003) ATPase activity and oligomerization of solubilized Na+/K+-ATPase maintained by synthetic phosphatidylserine. Ann NY Acad Sci 986:235–237

    Article  PubMed  CAS  Google Scholar 

  12. Hattori H, Kanfer JN (1983) Effects of base exchange reaction on the Na+, K+ ATPase in rat brain microsomes. Neurochem Res 8:1185–1195

    Article  PubMed  CAS  Google Scholar 

  13. Buratta S, Mambrini R, Miniaci MC et al (2004) Group I metabotropic glutamate receptors mediate the inhibition of phosphatidylserine synthesis in rat cerebellar slices: a possible role in physiology and pathology. J Neurochem 89:730–738

    Article  PubMed  CAS  Google Scholar 

  14. Goracci G, Blomstrand C, Arienti G et al (1973) Base-exchange enzymic system for the synthesis of phospholipids in neuronal and glial cells and their subfractions: a possible marker for neuronal membranes. J Neurochem 20:1167–1180

    Article  PubMed  CAS  Google Scholar 

  15. Rhodes PG, Hu ZY, Sun GY (1993) Effects of chlorpromazine on phosphatidylserine biosynthesis in rat pup brain exposed to ethanol in utero. Neurochem Int 22:75–80

    Article  PubMed  CAS  Google Scholar 

  16. Mozzi R, Andreoli V, Buratta S et al (1997) Different mechanisms regulate phosphatidylserine synthesis in rat cerebral cortex. Mol Cell Biochem 168:41–49

    Article  PubMed  CAS  Google Scholar 

  17. Buratta S, Felicetti M, Mozzi R (2007) Synthesis of phosphatidylserine by base exchange in Triton-insoluble floating fractions from rat cerebellum. J Neurochem 103:942–951

    Article  PubMed  CAS  Google Scholar 

  18. Farooqui AA, Huang HM, Taylor AA et al (1985) Isolation and characterization of plasma membrane fraction from rat brain and spinal cord. Fed Proc 44:245–255

    Google Scholar 

  19. Stone SJ, Vance JE (2000) Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes. J Biol Chem 275:34534–34540

    Article  PubMed  CAS  Google Scholar 

  20. Chen S, Bawn D, Besshoh S et al (2005) Association of heat shock proteins and neuronal membrane components with lipid rafts from rat brain. J Neurosci Res 81:522–529

    Article  PubMed  CAS  Google Scholar 

  21. Botto L, Masserini M, Cassetti A et al (2004) Immunoseparation of Prion protein-enriched domains from other detergent-resistant membrane fractions, isolated from neuronal cells. FEBS Lett 557:143–147

    Article  PubMed  CAS  Google Scholar 

  22. Parkin ET, Turner AJ, Hooper NM (1999) Amyloid precursor protein, although partially detergent-insoluble in mouse cerebral cortex, behaves as an atypical lipid raft protein. Biochem J 344:23–30

    Article  PubMed  CAS  Google Scholar 

  23. Sun GY, Huang H, Kelleher HA et al (1988) Marker enzymes, phospholipids and acylgroup composition of a somal plasma membrane fraction isolated from rat cerebral cortex: a comparison with microsomes and synaptic plasma membranes. Neurochem Int 12:69–77

    Article  PubMed  CAS  Google Scholar 

  24. Camici O, Corazzi L (1997) Phosphatidylserine translocation into brain mitochondria: involvement of a fusogenic protein associated with mitochondrial membranes. Mol Cell Biochem 175:71–80

    Article  PubMed  CAS  Google Scholar 

  25. Becher A, White JH, McIlhinney RA (2001) The gamma-aminobutyric acid receptor B, but not the metabotropic glutamate receptor type-1, associates with lipid rafts in the rat cerebellum. J Neurochem 79:787–795

    Article  PubMed  CAS  Google Scholar 

  26. Dalskov SM, Immerdal L, Niels-Christiansen LL et al (2005) Lipid raft localization of GABA A receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells. Neurochem Int 46:489–499

    Article  PubMed  CAS  Google Scholar 

  27. Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lip Res 44:655–667

    Article  CAS  Google Scholar 

  28. Szymańska E, Korzeniowski M, Raynal P et al (2009) Contribution of PIP-5 kinase Ialpha to raft-based FcgammaRIIA signaling. Exp Cell Res 315:981–995

    Article  PubMed  Google Scholar 

  29. Liscovitch M, Czarny M, Fiucci G et al (1999) Localization and possible functions of phospholipase D isozymes. Biochim Biophys Acta 1439:245–263

    PubMed  CAS  Google Scholar 

  30. Yamaga M, Kawai K, Kiyota M et al (2008) Recruitment and activation of phospholipase C (PLC)-delta1 in lipid rafts by muscarinic stimulation of PC12 cells: contribution of p122RhoGAP/DLC1, a tumor-suppressing PLCdelta1 binding protein. Adv Enzyme Regul 48:41–54

    Article  PubMed  CAS  Google Scholar 

  31. Mateos MV, Salvador GA, Giusto NM (2010) Selective localization of phosphatidylcholine-derived signaling in detergent-resistant membranes from synaptic endings. Biochim Biophys Acta 1798:624–636

    Article  PubMed  CAS  Google Scholar 

  32. Bae TJ, Kim MS, Kim JW et al (2004) Lipid raft proteome reveals ATP synthase complex in the cell surface. Proteomics 4:3536–3548

    Article  PubMed  CAS  Google Scholar 

  33. Kurzchalia TV, Hartmann E, Dupree P (1995) Guilty by insolubility-does a protein’s detergent insolubility reflect a caveolar location? Trends Cell Biol 5:187–190

    Article  PubMed  CAS  Google Scholar 

  34. Butler M, Morell P (1983) The role of phosphatidylserine decarboxylase in brain phospholipid metabolism. J Neurochem 41:1445–1454

    Article  PubMed  CAS  Google Scholar 

  35. Horrocks LA, Yeo YK, Harder HW et al (1986) Choline plasmalogens, glycerophospholipid methylation, and receptor-mediated activation of adenylate cyclase. Adv Cyclic Nucleotide Protein Phosphor Res 20:263–292

    CAS  Google Scholar 

  36. Blusztajn JK, Wurtman RJ (1983) Choline and cholinergic neurons. Science 221:614–620

    Article  PubMed  CAS  Google Scholar 

  37. Suzuki TT, Kanfer JN (1985) Purification and properties of an ethanolamine-serine base exchange enzyme of rat brain microsomes. J Biol Chem 260:1394–1399

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr G.A. Boyd for English editing of this paper. This work was supported by the Italian Ministry of University Education and Research (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Mozzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buratta, S., Ferrara, G. & Mozzi, R. Presence of Phosphatidylserine Synthesizing Enzymes in Triton Insoluble Floating Fractions from Cerebrocortical Plasma Membranes. Neurochem Res 36, 774–782 (2011). https://doi.org/10.1007/s11064-011-0399-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0399-0

Keywords

Navigation