Skip to main content
Log in

Maternal Deprivation Induces Depressive-like Behaviour and Alters Neurotrophin Levels in the Rat Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The present study was aimed to evaluate the behavioral and molecular effects of maternal deprivation in adult rats. To this aim, male rats deprived and non-deprived were assessed in the forced swimming and open-field tests in adult phase. In addition adrenocorticotrophin hormone (ACTH) levels was assessed in serum and brain-derived-neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and nerve growth factor (NGF) protein levels were assessed in prefrontal cortex, hippocampus and amygdala. We observed that maternal deprivation increased immobility time, and decreased climbing time, without affecting locomotor activity. ACTH circulating levels were increased in maternal deprived rats. Additionally, BDNF protein levels were reduced in the amygdala and NT-3 and NGF were reduced in both hippocampus and amygdala in maternal deprived rats, compared to control group. In conclusion, our results support the idea that behavioral, ACTH circulating levels and neurotrophins levels altered in maternal deprivation model could contribute to stress-related diseases, such as depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agid O, Shapira B, Zislin J, Ritsner M, Hanin B, Murad H, Troudart T, Bloch M, Heresco-Levy U, Lerer B (1999) Environment and vulnerability to major psychiatric illness: a case control study of early parental loss in major depression, bipolar disorder and schizophrenia. Mol Psychiatry 4:163–172

    Article  CAS  PubMed  Google Scholar 

  2. Tandberg E, Larsen JP, Aarsland D, Cummings JL (1996) The occurrence of depression in Parkinson’s disease. A community-based study. Arch Neurol 53:175–179

    CAS  PubMed  Google Scholar 

  3. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34:13–25

    Article  CAS  PubMed  Google Scholar 

  4. Martinowich K, Manji H, Lu B (2007) New insights into BDNF function in depression and anxiety. Nat Neurosci 10:1089–1093

    Article  CAS  PubMed  Google Scholar 

  5. Garcia LB, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, Stertz L, Fries G, Gavioli E, Kapczinski F, Quevedo J (2008) Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog-Neuropsychopharmacol Biol Psychiatry 32:140–144

    Article  CAS  PubMed  Google Scholar 

  6. Garcia LB, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, Stertz L, Fries G, Gavioli E, Kapczinski F, Quevedo J (2008) Chronic administration of ketamine elicits antidepressant-like effects in rats without affecting hippocampal brain-derived neurotrophic factor protein levels. Basic Clin Pharmacol Toxicol 103:502–506

    Article  CAS  PubMed  Google Scholar 

  7. Garcia LSB, Comim CM, Valvassori SS, Réus GZ, Stertz L, Kapczinski F, Gavioli EC, Quevedo J (2009) Ketamine treatment reverses behavioral and physiological alterations induced by chronic mild stress in rats. Prog Neuropsychopharmacol Biol Psychiatry 30:450–455

    Article  Google Scholar 

  8. Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455:894–902

    Article  CAS  PubMed  Google Scholar 

  9. Matthews K, Robbins TW (2003) Early experience as a determinant of adult behavioural responses to reward: the effects of repeated maternal separation in the rat. Neurosci Biobehav Rev 27:45–55

    Article  PubMed  Google Scholar 

  10. Kosten TA, Lee HJ, Kim JJ (2007) Neonatal handling alters learning in adult male and female rats in a task-specific manner. Brain Res 18:144–153

    Article  Google Scholar 

  11. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed  Google Scholar 

  12. Fortunato JJ, Réus GZ, Kirsch TM, Stringari RB, Stertz L, Kapczinski F, Pinto JP, Hallak JE, Zuardi AW, Crippa JA, Quevedo J (2009) Acute harmine administration induces antidepressant-like effects and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 33:1425–1430

    Article  CAS  PubMed  Google Scholar 

  13. Trajkovska V, Santini MA, Marcussen AB, Thomsen MS, Hansen HH, Mikkelsen JD, Arneberg L, Kokaia M, Knudsen GM, Aznar S (2009) BDNF downregulates 5-HT2A receptor protein levels in hippocampal cultures. Neurochem Int 55:697–702

    Article  CAS  PubMed  Google Scholar 

  14. Cirulli F, Micera A, Alleva E, Aloe L (1998) Early maternal separation increases NGF expression in the developing rat hippocampus. Pharmacol Biochem Behav 59:853–858

    Article  CAS  PubMed  Google Scholar 

  15. Faure J, Uys JD, Marais L, Stein DJ, Daniels WM (2006) Early maternal separation followed by later stressors leads to dysregulation of the HPA-axis and increases in hippocampal NGF and NT-3 levels in a rat model. Metab Brain Dis 21:181–188

    Article  CAS  PubMed  Google Scholar 

  16. Chung EK, Bian ZX, Xu HX, Sung JJ (2009) Neonatal maternal separation increases brain-derived neurotrophic factor and tyrosine kinase receptor B expression in the descending pain modulatory system. Neurosignals 17:213–221

    Article  CAS  PubMed  Google Scholar 

  17. Kikusui T, Ichikawa S, Mori Y (2009) Maternal deprivation by early weaning increases corticosterone and decreases hippocampal BDNF and neurogenesis in mice. Psychoneuroendocrinology 34:762–772

    Article  CAS  PubMed  Google Scholar 

  18. Macrí S, Laviola G, Leussis MP, Andersen SL (2010) Abnormal behavioral and neurotrophic development in the younger sibling receiving less maternal care in a communal nursing paradigm in rats. Psychoneuroendocrinology 35:392–402

    Article  PubMed  Google Scholar 

  19. McArthur R, Borsini F (2006) Animal models of depression in drug discovery: a historical perspective. Pharmacol Biochem Behav 84:436–452

    Article  CAS  PubMed  Google Scholar 

  20. Mello PB, Benetti F, Cammarota M, Izquierdo I (2009) Physical exercise can reverse the deficit in fear memory induced by maternal deprivation. Neurobiol Learn Mem 92:364–369

    Article  PubMed  Google Scholar 

  21. Porsolt RD, Le Pichon M, Jalfre M (1977) Animal model of depression. Nature 266:730–732

    Article  CAS  PubMed  Google Scholar 

  22. Detke MJ, Rickels M, Lucki I (1995) Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacol 121:66–72

    Article  CAS  Google Scholar 

  23. Lowry OH, Rosebough NG, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  24. El Khoury A, Gruber SH, Mork A, Mathe AA (2006) Adult life behavioral consequences of early maternal separation are alleviated by escitalopram treatment in a rat model of depression. Prog Neuropsychopharmacol Biol Psychiatry 30:535–540

    Article  CAS  PubMed  Google Scholar 

  25. Aisa B, Tordera R, Lasheras B, Del Rio J, Ramirez MJ (2007) Cognitive impairment associated to HPA axis hyperactivity after maternal separation in rats. Psychoneuroendocrinology 32:256–266

    Article  CAS  PubMed  Google Scholar 

  26. Lee JH, Kim HJ, Kim JG, Ryu V, Kim BT, Kang DW, Jahng JW (2007) Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neurosci Res 58:32–39

    Article  CAS  PubMed  Google Scholar 

  27. Lambas-Senas L, Mnie-Filali O, Certin V, Faure C, Lemoine L, Zimmer L, Haddjeri N (2009) Functional correlates for 5-HT(1A) receptors in maternally deprived rats displaying anxiety and depression-like behaviors. Prog Neuropsychopharmacol Biol Psychiatry 33:262–268

    Article  CAS  PubMed  Google Scholar 

  28. Maniam J, Morris MJ (2010) Long-term postpartum anxiety and depression-like behavior in mother rats subjected to maternal separation are ameliorated by palatable high fat diet. Behav Brain Res 208:72–79

    Article  CAS  PubMed  Google Scholar 

  29. Sung Y, Shina M, Choa S, Baikb H, Jin B, Changa H, Leea E, Kima C (2010) Depression-like state in maternal rats induced by repeated separation of pups is accompanied by a decrease of cell proliferation and an increase of apoptosis in the hippocampus. Neurosci Lett 470:86–90

    Article  CAS  PubMed  Google Scholar 

  30. Ruedi-Bettschen D, Pedersen EM, Feldon J, Pryce CR (2005) Early deprivation under specific conditions leads to reduced interest in reward in adulthood in Wistar rats. Behav Brain Res 156:297–310

    Article  PubMed  Google Scholar 

  31. Marais L, van Rensburg SJ, van Zyl JM, Stein DJ, Daniels WM (2008) Maternal separation of rat pups increases the risk of developing depressive-like behavior after subsequent chronic stress by altering corticosterone and neurotrophin levels in the hippocampus. Neurosci Res 61:106–112

    Article  CAS  PubMed  Google Scholar 

  32. Mourlona V, Baudina A, Blanca O, Laubera A, Girosa B, Naudona L, Daugéa V (2010) Maternal deprivation induces depressive-like behaviours only in female rats. Behav Brain Res (in press)

  33. Fortunato JJ, Réus GZ, Kirsch TR, Stringari RB, Fries GR, Kapczinski F, Hallak JE, Zuardi AW, Crippa JA, Quevedo J (2010) Effects of beta- carboline harmine on behavioral and physiological parameters observed in the chronic mild stress model: further evidence of antidepressant properties. Brain Res Bull 81:491–496

    Article  CAS  PubMed  Google Scholar 

  34. Parker KJ, Schatzberg AF, Lyons DM (2003) Neuroendocrine aspects of hypercortisolism in major depression. Horm Behav 43:60–66

    Article  CAS  PubMed  Google Scholar 

  35. Nemeroff CB, Owens MJ (2002) Treatment of mood disorders. Nat Neurosci 5:1068–1070

    Article  CAS  PubMed  Google Scholar 

  36. O’Connor TM, O’Halloran DJ, Shanahan F (2000) The stress response and the hypothalamic–pituitary–adrenal axis: from molecule to melancholia. QJM 93:323–333

    Article  PubMed  Google Scholar 

  37. Rots NY, de Jong J, Workel JO, Levine S, Cools AR, de Kloet ER (1996) Neonatal maternally deprived rats have as adults elevated basal pituitary–adrenal activity and enhanced susceptibilty to apomorphine. J Neuroendocrinol 8:501–506

    Article  CAS  PubMed  Google Scholar 

  38. Mirescu C, Gould E (2006) Stress and adult neurogenesis. Hippocampus 16:233–238

    Article  CAS  PubMed  Google Scholar 

  39. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127

    Article  CAS  PubMed  Google Scholar 

  40. Castren E, Vooikar V, Rantamaki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7:18–21

    Article  CAS  PubMed  Google Scholar 

  41. Lindsay RM, Wiegand SJ, Altar CA, DiStefano PS (1994) Neurotrophic factors: from molecule to man. Trends Neurosci 17:182–190

    Article  CAS  PubMed  Google Scholar 

  42. Duman RS (2004) Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromol Med 5:11–25

    Article  CAS  Google Scholar 

  43. Kozisek ME, Middlemas D, Bylund DB (2008) Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacol Ther 117:30–51

    Article  CAS  PubMed  Google Scholar 

  44. Lippmann M, Bress A, Nemeroff CB, Plotsky PM, Monteggia LM (2007) Long-term behavioural and molecular alterations associated with maternal separation in rats. Eur J Neurosci 25:3091–3098

    Article  PubMed  Google Scholar 

  45. Ognibene E, Adriani W, Caprioli A, Ghirardi O, Ali SF, Aloe L, Laviola G (2008) The effect of early maternal separation on brain derived neurotrophic factor and monoamine levels in adult heterozygous realer mice. Prog Neuropsychopharmacol Biol Psychiatry 32:1269–1276

    Article  CAS  PubMed  Google Scholar 

  46. Choy KH, de Visser Y, Nichols NR, van den Buuse M (2008) Combined neonatal stress and young-adult glucocorticoid stimulation in rats reduce BDNF expression in hippocampus: effects on learning and memory. Hippocampus 18:655–667

    Article  CAS  PubMed  Google Scholar 

  47. Kuma H, Miki T, Matsumoto Y, Gu H, Lib H, Kusaka T, Satriotomo I, Okamoto H, Yokoyama T, Bedid KS, Onishie S, Suwakia H, Takeuchi Y (2004) Early maternal deprivation induces alterations in brain-derived neurotrophic factor expression in the developing rat hippocampus. Neurosci Lett 372:68–73

    Article  CAS  PubMed  Google Scholar 

  48. Roceri M, Hendriks W, Racagni G, Ellenbroek BA, Riva MA (2002) Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol Psychiatry 7:609–616

    Article  CAS  PubMed  Google Scholar 

  49. Zimmerberg B, Foote HE, Van Kempen TA (2009) Olfactory association learning and brain-derived neurotrophic factor in an animal model of early deprivation. Dev Psychobiol 51:333–344

    Article  PubMed  Google Scholar 

  50. Cirulli F, Alleva E, Antonelli A, Aloe L (2000) NGF expression in the developing rat brain effects of maternal separation. Brain Res Dev Brain Res 123:129–134

    Article  CAS  PubMed  Google Scholar 

  51. Schaaf MJM, Workel JO, Lesscher HM, Vreugdenhil E, Oitzl MS, de Kloet ER (2001) Correlation between hippocampal BDNF mRNA expression and memory performance in senescent rats. Brain Res 915:227–233

    Article  CAS  PubMed  Google Scholar 

  52. Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237:1154–1162

    Article  CAS  PubMed  Google Scholar 

  53. Cook SC, Wellman CL (2004) Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60:236–248

    Article  PubMed  Google Scholar 

  54. Maroun M, Richter-Levin G (2003) Exposure to acute stress blocks the induction of long-term potentiation of the amygdala-prefrontal cortex pathway in vivo. J Neurosci 23:4406–4409

    CAS  PubMed  Google Scholar 

  55. Maroun M (2006) Stress reverses plasticity in the pathway projecting from the ventromedial prefrontal cortex to the basolateral amygdala. Eur J Neurosci 24:2917–2922

    Article  PubMed  Google Scholar 

  56. Petrovich GD, Holland PC, Gallagher M (2005) Amygdalar and prefrontal pathways to the lateral hypothalamus are activated by a learned cue that stimulates eating. J Neurosci 25:8295–8302

    Article  CAS  PubMed  Google Scholar 

  57. Paton JJ, Belova MA, Morrison SE, Salzman CD (2006) The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439:865–870

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from CNPq-Brazil (JQ and FK), FAPESC-Brazil (JQ), Instituto Cérebro e Mente-Brazil (JQ and FK) and UNESC-Brazil (JQ). JQ and FK are recipients of CNPq (Brazil) Productivity fellowships. GZR is holder of a FAPESC studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Quevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Réus, G.Z., Stringari, R.B., Ribeiro, K.F. et al. Maternal Deprivation Induces Depressive-like Behaviour and Alters Neurotrophin Levels in the Rat Brain. Neurochem Res 36, 460–466 (2011). https://doi.org/10.1007/s11064-010-0364-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0364-3

Keywords

Navigation