Neurochemical Research

, Volume 35, Issue 11, pp 1700–1707 | Cite as

Effects of Chronic Restraint Stress and 17-β-Estradiol Replacement on Oxidative Stress in the Spinal Cord of Ovariectomized Female Rats

  • Leonardo M. Crema
  • Luisa A. Diehl
  • Ana P. Aguiar
  • Lúcia Almeida
  • Fernanda U. Fontella
  • Letícia Pettenuzzo
  • Deusa Vendite
  • Carla Dalmaz


Previous studies have shown sex-specific oxidative changes in spinal cord of rats submitted to chronic stress, which may be due to gonadal hormones. Here, we assessed total radical-trapping potential (TRAP), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and lipid peroxidation (evaluated by the TBARS test) in the spinal cord of ovariectomized (OVX) female rats. Female rats were subjected to OVX, and half of the animals received estradiol replacement. Animals were subdivided into controls and chronically stressed (for 40 days). Our findings demonstrate that chronic stress decreased TRAP, and increased SOD activity in spinal cord homogenates from ovariectomized female rats and had no effect on GPx activity. On the other hand, groups receiving 17β-estradiol replacement presented a decreased GPx activity, but no alteration in TRAP and in SOD activity. No differences in the TBARS test were found in any of the groups analyzed. In conclusion, our results support the idea that chronic stress induces an imbalance between SOD and GPx activities, additionally decreasing TRAP. Estradiol replacement did not reverse the effects of chronic stress, but induced a decrease in GPx activity. Therefore, estradiol replacement in ovariectomized chronically stressed rats could make the spinal cord more susceptible to oxidative injury.


Chronic stress Estradiol Spinal cord Oxidative stress 



This work was supported by the National Research Council of Brazil (CNPq), and FINEP/Rede IBN 01.06.0842-00. Leonardo M. Crema was the recipient of a CAPES fellowship.


  1. 1.
    Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658CrossRefPubMedGoogle Scholar
  3. 3.
    Madrigal JL, Garcia-Bueno B, Caso JR et al (2006) Stress-induced oxidative changes in brain. CNS Neurol Disord Drug Targets 5(5):561–568CrossRefPubMedGoogle Scholar
  4. 4.
    Bardakci H, Kaplan S, Karadeniz U et al (2006) Methylene blue decreases ischemia-reperfusion (I/R)-induced spinal cord injury: an in vivo study in an I/R rabbit model. Eur Surg Res 38(5):482–488CrossRefPubMedGoogle Scholar
  5. 5.
    Tabajara AS, Fontella FU, Torres ILS et al (2003) Gender differences in oxidative stress in spinal cord of rats submitted to repeated restraint stress. Neurochem Res 28(9):1315–1320CrossRefPubMedGoogle Scholar
  6. 6.
    Sorrells SF, Caso JR, Munhoz CD et al (2009) The stressed CNS: when glucocorticoids aggravate inflammation. Neuron 64(1):33–39CrossRefPubMedGoogle Scholar
  7. 7.
    Ceccatelli S, Tamm C, Zhang Q et al (2007) Mechanisms and modulation of neural cell damage induced by oxidative stress. Physiol Behav 92(1–2):87–92CrossRefPubMedGoogle Scholar
  8. 8.
    Prediger ME, Gamaro GD, Crema LM et al (2004) Estradiol protects against oxidative stress induced by chronic variate stress. Neurochem Res 29(10):1923–1930CrossRefPubMedGoogle Scholar
  9. 9.
    Fontella FU, Bruno AN, Balk RS et al (2005) Repeated stress effects on nociception and on ectonucleotidase activities in spinal cord synaptosomes of female rats. Physiol Behav 2:213–219CrossRefGoogle Scholar
  10. 10.
    de Vasconcellos AP, Nieto FB, Crema LM (2006) Chronic lithium treatment has antioxidant properties but does not prevent oxidative damage induced by chronic variate stress. Neurochem Res 31(9):1141–1151CrossRefPubMedGoogle Scholar
  11. 11.
    Zafir A, Banu N (2009) Modulation of in vivo oxidative status by exogenous corticosterone and restraint stress in rats. Stress 12(2):167–177CrossRefPubMedGoogle Scholar
  12. 12.
    Torres ILS, Buffon A, Silveira PP et al (2002) Effect of chronic and acute stress on ecto-nucleotidase activities in spinal cord. Physiol Behav 75:1–5CrossRefPubMedGoogle Scholar
  13. 13.
    Gamaro GD, Xavier MH, Denardin JD et al (1998) The effects of acute and repeated restraint stress on the nociceptive response in rats. Physiol Behav 63:693–697CrossRefPubMedGoogle Scholar
  14. 14.
    Crema LM, Vendite D, Horn AP et al (2009) Effects of chronic restraint stress and estradiol replacement on glutamate release and uptake in the spinal cord from ovariectomized female rats. Neurochem Res 34(3):499–507CrossRefPubMedGoogle Scholar
  15. 15.
    Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105CrossRefPubMedGoogle Scholar
  16. 16.
    Torres IL, Vasconcellos AP, Silveira SN et al (2001) Effect of repeated stress on novelty-induced antinociception in rats. Braz J Med Biol Res 34:241–244PubMedGoogle Scholar
  17. 17.
    Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  18. 18.
    Lissi E, Pascual C, Del Castillo MD (1992) Luminol luminescence induced by 2, 2′-Azo-bis(2-amidinopropane) thermolysis. Free Radic Res Commun 17:299–311CrossRefPubMedGoogle Scholar
  19. 19.
    Evelson P, Travacio M, Repetto M et al (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266CrossRefPubMedGoogle Scholar
  20. 20.
    Lissi E, Salim-Hanna M, Pascual C et al (1995) Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radic Biol Med 18(2):153–158CrossRefPubMedGoogle Scholar
  21. 21.
    Delmas-Beauvieux MC, Peuchant E, Dumon MF et al (1995) Relationship between red blood cell antioxidant enzymatic system status and lipid peroxidation during the acute phase of malaria. Clin Biochem 28:163–169CrossRefPubMedGoogle Scholar
  22. 22.
    Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333CrossRefPubMedGoogle Scholar
  23. 23.
    Buege JA, Aust SD (1978) Microssomal lipid peroxidation. Methods Enzymol 52:302–310CrossRefPubMedGoogle Scholar
  24. 24.
    Yagi K (1998) Simple for the level of total lipid peroxides in serum or plasma. In: Armstrong D (ed) Free radical and antioxidant protocols, 108. Humana Press Inc, Totowa, pp 101–106CrossRefGoogle Scholar
  25. 25.
    Llesuy S, Evelson P, Gonzalez Flecha B et al (1994) Oxidative stress in muscle and liver of rats with septic syndrome. Free Radic Biol Med 16:445–451CrossRefPubMedGoogle Scholar
  26. 26.
    Behl C, Skutella T, Lezoualch F et al (1997) Neuroprotection against oxidative stress by estrogens: structure–activity relationship. Mol Pharmacol 51:535–541PubMedGoogle Scholar
  27. 27.
    Manoli LP, Gamaro GD, Silveira PP et al (2000) Effect of chronic variate stress on thiobarbituric-acid reactive species and on total radical-trapping potential in distinct regions of rat brain. Neurochem Res 25(7):915–921CrossRefPubMedGoogle Scholar
  28. 28.
    Afonso V, Champy R, Mitrovic D et al (2007) Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine 74(4):324–329CrossRefPubMedGoogle Scholar
  29. 29.
    Kaynar MY, Hanci M, Kuday C et al (1994) Changes in the activity of antioxidant enzymes (SOD, GPX, CAT) after experimental spinal cord injury. Tokushima J Exp Med 41(3–4):133–136PubMedGoogle Scholar
  30. 30.
    Noschang CG, Krolow R, Pettenuzzo LF et al (2009) Interactions between chronic stress and chronic consumption of caffeine on the enzymatic antioxidant system. Neurochem Res 34(9):1568–1574CrossRefPubMedGoogle Scholar
  31. 31.
    Pajović SB, Saicić ZS (2008) Modulation of antioxidant enzyme activities by sexual steroid hormones. Physiol Res 57(6):801–811PubMedGoogle Scholar
  32. 32.
    McIntosh LJ, Hong KE, Sapolsky RM (1998) Glucocorticoids may alter antioxidant enzyme capacity in the brain: baseline studies. Brain Res 791(1–2):209–214CrossRefPubMedGoogle Scholar
  33. 33.
    Chen JX, Tang YT, Yang JX (2008) Changes of glucocorticoid receptor and levels of CRF mRNA, POMC mRNA in brain of chronic immobilization stress rats. Cell Mol Neurobiol 28(2):237–244CrossRefPubMedGoogle Scholar
  34. 34.
    Chong ZZ, Faqi L, Maiese K (2005) Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 75:207–246CrossRefPubMedGoogle Scholar
  35. 35.
    Fisher AB, Dodia C, Manevich Y et al (1999) Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase. J Biol Chem 274:21326–21334CrossRefPubMedGoogle Scholar
  36. 36.
    Howard SA, Hawkes WC (1998) The relative effectiveness of human plasma glutathione peroxidase as a catalyst for the reduction of hydroperoxides by glutathione. Biol Trace Elem Res 6:127–136CrossRefGoogle Scholar
  37. 37.
    Behl C, Holsboer F (1999) The female sex hormone oestrogen as a neuroprotectant. Trends Pharmacol Sci 20:441–444CrossRefPubMedGoogle Scholar
  38. 38.
    Brinton RD, Chen S, Montoya M et al (2000) The women’s health initiative estrogen replacement therapy is neurotrophic and neuroprotective. Neurobiol Aging 21:475–496CrossRefGoogle Scholar
  39. 39.
    Singh M, Setalo G Jr, Guan X et al (1999) Estrogen-induced activation of mitogen-activated protein kinase in cerebral cortical explants: convergence of estrogen and neurotrophin signaling pathways. J Neurosci 19:1179–1188PubMedGoogle Scholar
  40. 40.
    Nilsen J, Chen S, Brinton RD (2002) Dual action of estrogen on glutamate-induced calcium signaling: mechanisms requiring interaction between estrogen receptors and src/mitogen activated protein kinase pathway. Brain Res 930:216–234CrossRefPubMedGoogle Scholar
  41. 41.
    Stambolic V, Woodgett JR (1994) Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J 303:701–704PubMedGoogle Scholar
  42. 42.
    Coghlan MP, Culbert AA, Cross DA et al (2000) Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol 7:793–803CrossRefPubMedGoogle Scholar
  43. 43.
    Schmidt AJ, Krieg JC, Vedder H (2002) Estradiol increased GSH levels in hippocampal, neocortical and C6 cell culture. J Neurosci Res 67(4):544–550CrossRefPubMedGoogle Scholar
  44. 44.
    Ozacmak VH, Sayan H (2009) 17β-estradiol administration ameliorated ischemia-induced decrease in GSH levels in hippocampus and cortex cerebral from old rats. Physiol Res 58(6):909–912PubMedGoogle Scholar
  45. 45.
    Konyalioglu S, Durmaz G, Yalcin A (2007) The potential antioxidant effect of raloxifene treatment: a study on heart, liver and brain cortex of ovariectomized female rats. Cell Biochem Funct 25(3):259–266CrossRefPubMedGoogle Scholar
  46. 46.
    Feng Z, Zhang JT (2005) Brain mitochondrial GSH levels were severely depleted in the brain of OVX. Free Radic Biol Med 39(2):195–204CrossRefPubMedGoogle Scholar
  47. 47.
    Łukaszewicz-Hussain A, Moniuszko-Jakoniuk J (2003) Liver catalase, glutathione peroxidase and reductase activity, reduced glutathione and hydrogen peroxide levels in acute intoxication with chlorfenvinphos, an organophosphate insecticide. Polish J Environ Stud 13(3):303–309Google Scholar
  48. 48.
    Gordon KB, Macrae IM, Carswell HV (2005) Effects of 17beta-oestradiol on cerebral ischaemic damage and lipid peroxidation. Brain Res 2:155–162CrossRefGoogle Scholar
  49. 49.
    Swartz KR, Fee DB, Joy KM et al (2007) Gender differences in spinal cord injury are not estrogen-dependent. J Neurotrauma 24(3):473–480CrossRefPubMedGoogle Scholar
  50. 50.
    Nilsen J (2008) Estradiol and neurodegenerative oxidative stress. Front Neuroendocrinol 29(4):463–475CrossRefPubMedGoogle Scholar
  51. 51.
    Joosten HF, van Acker FA, van den Dobbelsteen DJ et al (2004) Genotoxicity of hormonal steroids. Toxicol Lett 151(1):113–134CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Leonardo M. Crema
    • 2
  • Luisa A. Diehl
    • 2
  • Ana P. Aguiar
    • 1
  • Lúcia Almeida
    • 3
  • Fernanda U. Fontella
    • 2
  • Letícia Pettenuzzo
    • 3
  • Deusa Vendite
    • 1
    • 3
  • Carla Dalmaz
    • 1
    • 2
    • 3
  1. 1.Departamento de Bioquímica, ICBSUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Programa de Pós-Graduação em Neurociências, ICBSUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Programa de Pós-Graduação em Bioquímica, ICBSUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations