Neurochemical Research

, Volume 35, Issue 10, pp 1538–1545 | Cite as

Recovery of Motor Deficit, Cerebellar Serotonin and Lipid Peroxidation Levels in the Cortex of Injured Rats

  • Antonio Bueno-Nava
  • Rigoberto Gonzalez-Pina
  • Alfonso Alfaro-Rodriguez
  • Vladimir Nekrassov-Protasova
  • Alfredo Durand-Rivera
  • Sergio Montes
  • Fructuoso Ayala-Guerrero


The sensorimotor cortex and the cerebellum are interconnected by the corticopontocerebellar (CPC) pathway and by neuronal groups such as the serotonergic system. Our aims were to determine the levels of cerebellar serotonin (5-HT) and lipid peroxidation (LP) after cortical iron injection and to analyze the motor function produced by the injury. Rats were divided into the following three groups: control, injured and recovering. Motor function was evaluated using the beam-walking test as an assessment of overall locomotor function and the footprint test as an assessment of gait. We also determined the levels of 5-HT and LP two and twenty days post-lesion. We found an increase in cerebellar 5-HT and a concomitant increase in LP in the pons and cerebellum of injured rats, which correlated with their motor deficits. Recovering rats showed normal 5-HT and LP levels. The increase of 5-HT in injured rats could be a result of serotonergic axonal injury after cortical iron injection. The LP and motor deficits could be due to impairments in neuronal connectivity affecting the corticospinal and CPC tracts and dysmetric stride could be indicative of an ataxic gait that involves the cerebellum.


Serotonin Ferrous chloride Lipid peroxidation Cerebellum Cortical damage 


  1. 1.
    Kandel ER, Schwartz JH, Jessel TM (2000) Principles of neural science. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Leergaard TB (2003) Clustered and laminar topographic patterns in rat cerebro-pontine pathways. Anat Embryol (Berl) 206:149–162Google Scholar
  3. 3.
    Daskalakis ZJ, Paradiso GO, Christensen KB et al (2004) Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol 557:689–700CrossRefPubMedGoogle Scholar
  4. 4.
    Niimura K, Chugani DC, Muzik O et al (1999) Cerebellar reorganization following cortical injury in humans: effects of lesion size and age. Neurology 52:792–797PubMedGoogle Scholar
  5. 5.
    Culic M, Blanusa ML, Grbic G et al (2005) Spectral analysis of cerebellar activity after acute brain injury in anesthetized rats. Acta Neurobiol Exp (Wars) 65:11–17Google Scholar
  6. 6.
    Krobert KA, Sutton RL, Feeney DM (1994) Spontaneous and amphetamine-evoked release of cerebellar noradrenaline after sensorimotor cortex contusion: an in vivo microdialysis study in the awake rat. J Neurochem 62:2233–2240CrossRefPubMedGoogle Scholar
  7. 7.
    Bueno-Nava A, Montes S, DelaGarza-Montano P et al (2008) Reversal of noradrenergic depletion and lipid peroxidation in the pons after brain injury correlates with motor function recovery in rats. Neurosci Lett 443:32–36CrossRefPubMedGoogle Scholar
  8. 8.
    Serteser M, Özben T, Gümüşlü S et al (2001) Biochemical evidence of crossed cerebellar diaschisis in terms of nitric oxide indicators and lipid peroxidation products in rats during focal cerebral ischemia. Acta Neurol Scand 103:43–48CrossRefPubMedGoogle Scholar
  9. 9.
    Thompson KJ, Shoham S, Connor JR (2001) Iron and neurodegenerative disorders. Brain Res Bull 55:155–164CrossRefPubMedGoogle Scholar
  10. 10.
    Subbarao KV, Richardson JS (1990) Iron-dependent peroxidation of rat brain: a regional study. J Neurosci Res 26:224–232CrossRefPubMedGoogle Scholar
  11. 11.
    Sziráki I, Mohanakumar KP, Rauhala P et al (1998) Manganese: a transition metal protects nigrostriatal neurons from oxidative stress in the iron-induced animal model of parkinsonism. Neuroscience 85:1101–1111CrossRefPubMedGoogle Scholar
  12. 12.
    Lin AM (2001) Coexistence of zinc and iron augmented oxidative injuries in the nigrostriatral dopaminergic system of SD rats. Free Radic Biol Med 30:225–231CrossRefPubMedGoogle Scholar
  13. 13.
    Lin AM, Chen CF, Ho LT (2002) Neuroprotective effect of intermittent hypoxia on iron-induced oxidative injury in rat brain. Exp Neurol 176:328–335CrossRefPubMedGoogle Scholar
  14. 14.
    Gregory A, Hayflick SJ (2005) Neurodegeneration with brain iron accumulation. Folia Neuropathol 43:286–296PubMedGoogle Scholar
  15. 15.
    Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31PubMedGoogle Scholar
  16. 16.
    Mosley RL, Benner EJ, Kadiu I et al (2006) Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 6:261–281CrossRefPubMedGoogle Scholar
  17. 17.
    Yoshida K, Kaneto K, Miyajima H et al (2000) Increased lipid peroxidation in the brains of aceruloplasminemia patients. J Neurol Sci 175:91–95CrossRefPubMedGoogle Scholar
  18. 18.
    D’Ambrosio R, Perucca E (2004) Epilepsy after head injury. Curr Opin Neurol 17:731–735CrossRefPubMedGoogle Scholar
  19. 19.
    Feeney DM, Sutton RL, Boyeson MG et al (1985) The locus coeruleus and cerebral metabolism: recovery of function after cortical injury. Physiol Psychol 13:197–203Google Scholar
  20. 20.
    Feeney DM, Baron JC (1986) Diaschisis. Stroke 17:817–820PubMedGoogle Scholar
  21. 21.
    Boyeson MG, Feeney DM (1990) Intraventricular norepinephrine facilitates motor recovery following sensorimotor cortex injury. Pharmacol Biochem Behav 35:497–501CrossRefPubMedGoogle Scholar
  22. 22.
    Goldstein LB (2006) Neurotransmitters and motor activity: effects on functional recovery after brain injury. NeuroRx 3:451–457CrossRefPubMedGoogle Scholar
  23. 23.
    Ciranna L (2006) Serotonin as a modulator of glutamate-and GABA-mediated neurotransmission: implicationsin physiological functions and in pathology. Curr Neuropharmacol 4:101–114CrossRefPubMedGoogle Scholar
  24. 24.
    Schweighofer N, Doya K, Kuroda S (2004) Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res Brain Res Rev 44:103–116CrossRefPubMedGoogle Scholar
  25. 25.
    Venero JL, Revuelta M, Cano J et al (1997) Time course changes in the dopaminergic nigrostriatal system following transection of the medial forebrain bundle: detection of oxidatively modified proteins in substantia nigra. J Neurochem 68:2458–2468CrossRefPubMedGoogle Scholar
  26. 26.
    Revuelta M, Venero JL, Machado A et al (1999) Serotonin hyperinnervation in the adult rat ventral mesencephalon following unilateral transection of the medial forebrain bundle. Correlation with reactive microgial and astroglial populations. Neuroscience 91:567–577CrossRefPubMedGoogle Scholar
  27. 27.
    Olfert ED, Cross BM, McWilliam AA (1993) Guide to the care and use of experimental animals. Can Council Anim CareGoogle Scholar
  28. 28.
    Festing MF (1994) Reduction of animal use: experimental design and quality of experiments. Lab Anim 28:212–221CrossRefPubMedGoogle Scholar
  29. 29.
    Hall RD, Lindholm EP (1974) Organization of motor and somatosensory neocortex in the albino rat. Brain Res 66:23–38CrossRefGoogle Scholar
  30. 30.
    Brailowsky S, Knight RT, Blood K et al (1986) Gamma-aminobutyric acid-induced potentiation of cortical hemiplegia. Brain Res 362:322–330CrossRefPubMedGoogle Scholar
  31. 31.
    Gonzalez-Pina R, Bueno-Nava A, Montes S et al (2005) Pontine norepinephrine content after motor cortical ablation in rats. Proc West Pharmacol Soc 48:73–76PubMedGoogle Scholar
  32. 32.
    Gonzalez-Pina R, Paz C (1997) Brain monoamine changes in rats after short periods of ozone exposure. Neurochem Res 22:63–66CrossRefPubMedGoogle Scholar
  33. 33.
    Triggs WJ, Willmore LJ (1984) In vivo lipid peroxidation in rat brain following intracortical Fe2+ injection. J Neurochem 42:976–980CrossRefPubMedGoogle Scholar
  34. 34.
    Santamaría A, Ríos C (1993) MK-801, an N-methyl-d-aspartate receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum. Neurosci Lett 159:51–54CrossRefPubMedGoogle Scholar
  35. 35.
    Kala SV, Hasinoff BB, Richardson JS (1996) Brain samples from Alzheimer’s patients have elevated levels of loosely bound iron. Int J Neurosci 86:263–269CrossRefPubMedGoogle Scholar
  36. 36.
    Uchino A, Takase Y, Nomiyama K et al (2006) Brainstem and cerebellar changes after cerebrovascular accidents: magnetic resonance imaging. Eur Radiol 16:592–597CrossRefPubMedGoogle Scholar
  37. 37.
    Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74CrossRefPubMedGoogle Scholar
  38. 38.
    Gotman I (1997) Characteristics of metals used in implants. J Endourol 11:383–389CrossRefPubMedGoogle Scholar
  39. 39.
    Tomizawa Y, Hanawa T, Kuroda D et al (2006) Corrosion of stainless steel sternal wire after long-term implantation. J Artif Organs 9:61–66CrossRefPubMedGoogle Scholar
  40. 40.
    Halliwell B (1987) Oxidants and human disease: some new concepts. FASEB J 1:358–364PubMedGoogle Scholar
  41. 41.
    Titmus MJ, Faber DS (1990) Axotomy-induced alterations in the electrophysiological characteristics of neurons. Prog Neurobiol 35:1–51CrossRefPubMedGoogle Scholar
  42. 42.
    Haring JH (1991) Reorganization of the area dentata serotoninergic plexus after lesions of the median raphe nucleus. J Comp Neurol 306:576–584CrossRefPubMedGoogle Scholar
  43. 43.
    Johnson MT, Ebner TJ (2000) Processing of multiple kinematic signals in the cerebellum and motor cortices. Brain Res Brain Res Rev 33:155–168CrossRefPubMedGoogle Scholar
  44. 44.
    Hruska RE, Kennedy S, Silbergeld EK (1979) Quantitative aspects of normal locomotion in rats. Life Sci 25:171–180CrossRefPubMedGoogle Scholar
  45. 45.
    Feeney DM, Gonzalez A, Law WA (1982) Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science 217:855–857CrossRefPubMedGoogle Scholar
  46. 46.
    Boyeson MG, Krobert K (1992) Cerebellar norepinephrine infusions facilitate recovery after sensorimotor cortex injury. Brain Res Bull 29:435–439CrossRefPubMedGoogle Scholar
  47. 47.
    Gonzalez-Pina R, Bueno-Nava A, Montes S et al (2006) Pontine and cerebellar norepinephrine content in adult rats recovering from focal cortical injury. Neurochem Res 31:1443–1449CrossRefPubMedGoogle Scholar
  48. 48.
    Feeney DM, Weisend MP, Kline AE (1993) Noradrenergic pharmacotherapy, intracerebral infusion and adrenal transplantation promote functional recovery after cortical damage. J Neural Transplant Plast 4:199–203CrossRefPubMedGoogle Scholar
  49. 49.
    Dam M, Tonin P, De Boni A et al (1996) Effects of fluoxetine and maprotiline on functional recovery in poststroke hemiplegic patients undergoing rehabilitation therapy. Stroke 27:1211–1214PubMedGoogle Scholar
  50. 50.
    Goldstein LB (2003) Model of recovery of locomotor ability after sensorimotor cortex injury in rats. ILAR J 44:125–129PubMedGoogle Scholar
  51. 51.
    Crawley J (1999) Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 835:18–26CrossRefPubMedGoogle Scholar
  52. 52.
    Garwicz M (2002) Spinal reflexes provide motor error signals to cerebellar modules-relevance for motor coordination. Brain Res Brain Res Rev 40:152–165CrossRefPubMedGoogle Scholar
  53. 53.
    Groenewegen HJ (2003) The basal ganglia and motor control. Neural Plast 10:107–120CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Antonio Bueno-Nava
    • 1
  • Rigoberto Gonzalez-Pina
    • 2
  • Alfonso Alfaro-Rodriguez
    • 3
  • Vladimir Nekrassov-Protasova
    • 4
  • Alfredo Durand-Rivera
    • 4
  • Sergio Montes
    • 5
  • Fructuoso Ayala-Guerrero
    • 6
  1. 1.Depto de Neurofisiologia-Lab. de Cromatografia y MicrodialisisINR, SSA, Calz. Mexico-Xochimilco 289 Col. Arenal de Guadalupe Deleg. TlalpanMexico CityMexico
  2. 2.Depto de Neurofisiologia-Lab. de Neuroplasticidad, Torre de InvestigaciónInstituto Nacional de Rehabilitación, SSA, Calz. México-Xochimilco 289, Col. Arenal de Guadalupe, Deleg. TlalpanMexico CityMexico
  3. 3.Depto de Neurofisiologia-Lab. de NeuroquimicaINR, SSAMexico CityMexico
  4. 4.Depto de Neurofisiologia-Lab. de NeuroprotecciónINR, SSAMexico CityMexico
  5. 5.Depto de NeuroquimicaINNN MVS, SSAMexico CityMexico
  6. 6.Facultad de PsicologiaUniversidad Nacional Autonoma de MexicoMexico CityMexico

Personalised recommendations