Neurochemical Research

, Volume 35, Issue 6, pp 894–898 | Cite as

Alternative Complement Pathway in Schizophrenia

  • Anna Boyajyan
  • Aren Khoyetsyan
  • Andranik Chavushyan
Original Paper


In the present study, we evaluated functional activity of the alternative pathway of complement in schizophrenia by measuring the alternative pathway hemolytic activity (AH50) of complement as well as hemolytic activity of the complement C3 component (C3H50) in the blood of patients with schizophrenia and healthy subjects. To assess the influence of neuroleptic treatment on measured parameters, both drug-free and medicated patients were examined. In addition, correlation analysis between AH50 and C3H50 has been performed. The results of the present study clearly demonstrate upregulation of the alternative complement cascade in schizophrenia and activator effect of neuroleptics on complement alternative pathway. Based upon the results obtained we hypothesize that hyperactivation of the alternative complement pathway in schizophrenia is stimulated by apoptotic cells.


Aberrant apoptosis Alternative complement pathway Complement C3 component Schizophrenia 



We thank the medical staff of Nubarashen Psychiatric Hospital for their kind support to this study as well as our colleagues from the research institutes of the Armenian National Academy of Sciences and the Yerevan State University involved in our study as healthy subjects and kindly provided us with their blood samples.


  1. 1.
    Sim RB, Laich A (2000) Serine proteases of the complement system. Biochem Soc Trans 28(5):545–550PubMedGoogle Scholar
  2. 2.
    Cole DS, Morgan BP (2003) Beyond lysis: how complement influences cell fate. Clin Sci 104:455–466CrossRefPubMedGoogle Scholar
  3. 3.
    Nauta AJ, Roos A, Daha MR (2004) A regulatory role for complement in innate immunity and autoimmunity. Int Arch Allergy Immunol 134(4):310–323CrossRefPubMedGoogle Scholar
  4. 4.
    Paccaud JP, Carpentier JL, Schifferli JA (1990) Difference in the clustering of complement receptor type 1 (CR1) on polymorphonuclear leukocytes and erythrocytes: effect on immune adherence. Eur J Immunol 20(2):283–289CrossRefPubMedGoogle Scholar
  5. 5.
    Wetsel RA (1995) Structure, function and cellular expression of complement anaphylatoxin receptors. Curr Opin Immunol 7(1):48–53CrossRefPubMedGoogle Scholar
  6. 6.
    Fureder W, Agis H, Willheim M et al (1995) Differential expression of complement receptors on human basophils and mast cells. Evidence for mast cell heterogeneity and CD88/C5aR expression on skin mast cells. J Immunol 155(6):3152–3160PubMedGoogle Scholar
  7. 7.
    Tenner AJ (1999) Membrane receptors for soluble defense collagens. Curr Opin Immunol 11(1):34–41CrossRefPubMedGoogle Scholar
  8. 8.
    Cherukuri A, Cheng PC, Pierce SK (2001) The role of the CD19/CD21 complex in B cell processing and presentation of complement-tagged antigens. J Immunol 167(1):163–172PubMedGoogle Scholar
  9. 9.
    Drouin SM, Kildsgaard J, Haviland J et al (2001) Expression of the complement anaphylatoxin C3a and C5a receptors on bronchial epithelial and smooth muscle cells in models of sepsis and asthma. J Immunol 166(3):2025–2032PubMedGoogle Scholar
  10. 10.
    Godau J, Heller T, Hawlisch H et al (2004) C5a initiates the inflammatory cascade in immune complex peritonitis. J Immunol 173(5):3437–3445PubMedGoogle Scholar
  11. 11.
    Zaidi AK, Amrani Y, Panettieri RA, Ali H (2006) Response to C3a, mast cells, and asthma. FASEB J 20(2):199CrossRefPubMedGoogle Scholar
  12. 12.
    Wakabayashi M, Ohi H, Tamano M et al (2006) Acquired loss of erythrocyte complement receptor type 1 in patients with diabetic nephropathy undergoing hemodialysis. Nephron Exp Nephrol 104(3):e89–e95CrossRefPubMedGoogle Scholar
  13. 13.
    Rahpeymai Y, Hietala MA, Wilhelmsson U et al (2006) Complement: a novel factor in basal and ischemia-induced neurogenesis. EMBO J 25:1364–1374CrossRefPubMedGoogle Scholar
  14. 14.
    Fourgeaud L, Boulanger LM (2007) Synapse remodeling, compliments of the complement system. Cell 131(6):1034–1036CrossRefPubMedGoogle Scholar
  15. 15.
    Stevens B, Allen NJ, Vazquez LE et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178CrossRefPubMedGoogle Scholar
  16. 16.
    Woods BT (1998) Is schizophrenia a progressive neurodevelopmental disorder? Toward a unitary pathogenetic mechanism. Am J Psychiatry 155:1661–1670PubMedGoogle Scholar
  17. 17.
    Ashe PC, Berry MD, Boulton AA (2001) Schizophrenia, a neurodegenerative disorder with neurodevelopmental antecedents. Prog Neuropsychopharmacol Biol Psychiatry 25:691–707CrossRefPubMedGoogle Scholar
  18. 18.
    Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Ann Rev Neurosci 25:409–432CrossRefPubMedGoogle Scholar
  19. 19.
    Jaaro-Peled H, Hayashi-Takagi A, Seshadri S et al (2009) Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1—ErbB4 and DISC1. Trends Neurosci 32(9):485–495CrossRefPubMedGoogle Scholar
  20. 20.
    Margolis RL, Chuang DM, Post RM (1994) Programmed cell death: implications for neuropsychiatric disorders. Biol Psychiatry 35:946–956CrossRefPubMedGoogle Scholar
  21. 21.
    Knable MB (1999) Schizophrenia and bipolar disorder: findings from studies of the Stanley foundation brain collection. Schizophr Res 39:149–152CrossRefPubMedGoogle Scholar
  22. 22.
    Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28:325–334CrossRefPubMedGoogle Scholar
  23. 23.
    Jarskog LF, Gilmore JH, Selinger ES, Lieberman JA (2000) Cortical bcl-2 protein expression and apoptotic regulation in schizophrenia. Biol Psychiatry 48:641–650CrossRefPubMedGoogle Scholar
  24. 24.
    Catts VS, Catts SV (2000) Apoptosis and schizophrenia: is the tumour suppressor gene, p53, a candidate susceptibility gene? Schizoph Res 41:405–415CrossRefGoogle Scholar
  25. 25.
    Benes FM (2000) Emerging principles of altered neural circuitry in schizophrenia. Brain Res Rev 31:251–269CrossRefPubMedGoogle Scholar
  26. 26.
    Kozlovsky N, Belmaker RH, Agam G (2002) GSK-3 and the neurodevelopmental hypothesis of schizophrenia. Eur Neuropsychopharmacol 12(1):13–25CrossRefPubMedGoogle Scholar
  27. 27.
    Berger GE, Wood S, McGorry PD (2003) Incipient neurovulnerability and neuroprotection in early psychosis. Psychopharmacol Bull 37:79–101PubMedGoogle Scholar
  28. 28.
    Benes FM, Walsh J, Bhattacharyya S et al (2000) DNA fragmentation decreased in schizophrenia but not bipolar disorder. Arch Gen Psychiatry 60:359–364CrossRefGoogle Scholar
  29. 29.
    Benes FM (2004) The role of apoptosis in neuronal pathology in schizophrenia and bipolar disorder. Curr Opin Psychiatry 17(3):189–190CrossRefGoogle Scholar
  30. 30.
    Jarskog LF, Selinger ES, Lieberman JA et al (2004) Apoptotic proteins in the temporal cortex in schizophrenia: high Bax/Bcl-2 ratio without caspase-3 activation. Am J Psychiatry 161(1):109–115CrossRefPubMedGoogle Scholar
  31. 31.
    Jarskog LF, Glantz LA, Gilmore JH et al (2005) Apoptotic mechanisms in the pathophysiology of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 29:846–858CrossRefPubMedGoogle Scholar
  32. 32.
    Catts VS, Cans SV, McGrath JJ, Feron F, McLead D, Coulson EJ, Lutze-Mann LH (2006) Apoptosis and schizophrenia: a pilot study based on dermal fibroblast cell lines. Schizophr Res 84(1):20–28CrossRefPubMedGoogle Scholar
  33. 33.
    Chen X, Wang X, Chen Q, Williamson V, van den OE et al (2008) MEGF10 association with schizophrenia. Biol Psychiatry 63:441–448CrossRefPubMedGoogle Scholar
  34. 34.
    Chen X, Sun C, Chen Q, O’Neill FA, Walsh D et al (2009) Apoptotic engulfment pathway and schizophrenia. PLoS One 4(9):e6875. doi: 10.1371/journal.pone.0006875 CrossRefPubMedGoogle Scholar
  35. 35.
    Hakobyan S, Boyajyan A, Sim RB (2005) Classical pathway complement activity in schizophrenia. Neurosci Lett 374(1):35–37CrossRefPubMedGoogle Scholar
  36. 36.
    Verbovetski I, Bychkov H, Trahtemberg U et al (2002) Opsonization of apoptotic cells by autologous iC3b facilitates clearance by immature dendritic cells, down-regulates DR and CD86, and upregulates CC chemokine receptor 7. J Exp Med 196:1553–1561CrossRefPubMedGoogle Scholar
  37. 37.
    Tsuji S, Kaji K, Nagasawa S (1994) Activation of the alternative pathway of human complement by apoptotic human umbilical vein endothelial cells. J Biochem (Tokyo) 116:794–800Google Scholar
  38. 38.
    Takizawa F, Tsuji S, Nagasawa S (1996) Enhancement of macrophage phagocytosis upon iC3b deposition on apoptotic cells. FEBS Lett 397:269–272CrossRefPubMedGoogle Scholar
  39. 39.
    Galili-Mosberg R, Gil-Ad I, Weizman A et al (2000) Haloperidol induced neurotoxicity—possible implications for tardive dyskenezia. J Neural Transm 107(4):479–490CrossRefGoogle Scholar
  40. 40.
    Sachdev PS (2000) The current status of tardive dyskinesia. Aust N Z J Psychiatry 34(3):355–369PubMedGoogle Scholar
  41. 41.
    Gil-ad I, Shtaif B, Shiloh R et al (2001) Evaluation of the neurotoxic activity of typical and atypical neuroleptics: relevance to iatrogenic extrapyramidal symptoms. Cell Mol Neurobiol 21(6):705–716CrossRefPubMedGoogle Scholar
  42. 42.
    Marandi SN, Trimble N, Lee S (2004) The effects of neuroleptic drugs on apoptosis inducing factor protein. Biopharm J 8(4) (online)Google Scholar
  43. 43.
    Whaley K, North J (1997) Haemolytic assays for whole complement activity and individual components. In: Doods AW, Sim RB (eds) Complement. A practical approach. Oxford University Press, Oxford, pp 19–47Google Scholar
  44. 44.
    Daha MR (1997) Purification of complement component. In: Doods AW, Sim RB (eds) Complement. A practical approach. Oxford University Press, Oxford, pp 121–133Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Anna Boyajyan
    • 1
  • Aren Khoyetsyan
    • 1
  • Andranik Chavushyan
    • 1
  1. 1.Institute of Molecular Biology NAS RAYerevanArmenia

Personalised recommendations