Advertisement

Neurochemical Research

, Volume 35, Issue 5, pp 681–687 | Cite as

The Physical Chemistry of Brain and Neural Cell Membranes: An Overview

  • D. S. Robertson
Overview

Abstract

The formation of cell membranes through the physical–chemical interaction of two hydrophilic colloidal fluids is applied to the formation of the membranes of brain and neural cells. Also described is the membrane mechanism of transfer of ions and compounds necessary for brain and neural cell functions into the cerebrospinal fluid through the blood–brain barrier. Changes in the cerebrospinal fluid giving rise to degradation of brain and neural cells and the formation of precipitates within the brain are considered. Monitoring of electrolyte changes in metabolic fluids is shown to be a possible method of predicting the onset of degenerate brain conditions.

Keywords

Ionic strength Cerebrospinal fluid Lymph fluid Blood plasma fluid 

References

  1. 1.
    Ramón y Cajal S (1933) Histology, 10th edn. Wood, BaltimoreGoogle Scholar
  2. 2.
    Peters A, Palay SL, Webster HD (1991) The fine structure of the nervous system, 3rd edn. Oxford, New YorkGoogle Scholar
  3. 3.
    Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  4. 4.
    Bradbury M (1979) The concept of a blood–brain barrier. Wiley, ChichesterGoogle Scholar
  5. 5.
    Goldstein GW, Betz AL (1986) The blood–brain barrier. Sci Am 254:74–83CrossRefGoogle Scholar
  6. 6.
    Brightman M (1977) Morphology of blood–brain interfaces. Exp Eye Res 25:1–25CrossRefPubMedGoogle Scholar
  7. 7.
    Robertson DS (2007) The formation and nature of mammalian cell membranes reconsidered. J Biol Res 7:19–27Google Scholar
  8. 8.
    Lewis GN, Randall M (1923) Thermodynamics and the free energy of chemical substances. McGraw-Hill Book Company, Inc., New York and London, p 373Google Scholar
  9. 9.
    Katzman R (1966) Effect of electrolyte disturbance on the central nervous system. Ann Rev Med 17:197–212CrossRefPubMedGoogle Scholar
  10. 10.
    Shaw DM, White S, Frizel D, Camps FE (1969) Brain electrolytes in depressive and alcoholic suicides. Br J Psychiatry 115:69–79CrossRefPubMedGoogle Scholar
  11. 11.
    Arieff AI, Llach F, Massr SG (1976) Neurological manifestations and morbidity of hyponatremia: correlation with brain water and electrolytes. Medicine (Baltimore) 55(2):121–129CrossRefGoogle Scholar
  12. 12.
    Tong X-L, Wang L, Gao T-B, Qin Y-G, Qi Q, Xu Y-P (2009) Potential function of amniotic fluid in fetal development—novel insights by comparing the composition of human amniotic fluid with umbilical cord and maternal serum at mid and late gestation. J Chin Med Assoc 72(7):368–373CrossRefPubMedGoogle Scholar
  13. 13.
    Iwata J, Nishikaze O (1979) Newmicro-turbidimetric method for determination of protein in cerebrospinal fluid and urine. Clin Chem 25(7):1317–1319PubMedGoogle Scholar
  14. 14.
    Nishiyama T, Sugai N, Hanaoka K (1998) In vitro changes in the transparency and pH of cerebrospinal fluid caused by adding midazolam. Eur J Anaesthesiol 15:27–31PubMedGoogle Scholar
  15. 15.
    Bradbury MW, Cole DF (1980) The role of the lymphatic system in drainage of cerebrospinal fluid and aqueous humour. J Physiol 299:353–365Google Scholar
  16. 16.
    Walter BA, Valera VA, Takahashi S, Ushiki T (2006) The olfactory route for cerebrospinal fluid drainage into the peripheral lymphatic system. Neuropathol Appl Neurobiol 32(4):388–396CrossRefPubMedGoogle Scholar
  17. 17.
    Greitz D, Hannerz J (1996) A proposed model of cerebrospinal fluid circulation: Observations with radionuclide cisternography. AJNR Am J Neuroradiol 17:431–438PubMedGoogle Scholar
  18. 18.
    Silverberg GD, Huhn S, Jaffe RA, Chang SD, Saul T, Heit G, Von Essen A, Rubenstein E (2002) Downregulation of cerebrospinal fluid production in patients with chronic hydrocephalus. J Neurosurgery 97(6):1271–1275CrossRefGoogle Scholar
  19. 19.
    Seehusen DA, Reeves MM, Fomin DA (2003) Cerebrospinal fluid analysis. Am Fam Physician E68(6):1103–1108Google Scholar
  20. 20.
    Silverberg GD, Mayo M, Saul T, Carvalho J, McGuire D (2004) Novel ventriculo- peritoneal shunt in Alzeimer’s disease cerebrospinal fluid biomarkers. Expert Rev Neourther 1:97–107CrossRefGoogle Scholar
  21. 21.
    Silverberg GD, Mayo M, Saul T, Carvalho J, McGuire D, Fellmann J (2008) Continuous CSF drainage in AD: results of a double-blind, randomized, placebo-controlled study. Neurology 71:202–209CrossRefPubMedGoogle Scholar
  22. 22.
    Franke M (1975) Statistical investigation of the senile plaques in human brains. Berlin, Akad. für Ärztl. Fortbildung d. DDR, Diss. B. 9Google Scholar
  23. 23.
    Hortschansky P, Schroeck V, Christopeit T, Zandomeneghi G, Fandrich M (2005) The aggregation kinetics of Alzheimer’s b-amyloid peptide is controlled by stochastic nucleation. Protein Sci 14:1753–1759CrossRefPubMedGoogle Scholar
  24. 24.
    Landfield PW, Applegate MD, Schmitzer D, Osborne SE, Naylor CE (1991) Phosphate/calcium alterations in the first stages of Alzheimer’s disease: implications for etiology and pathogenesis. J Neurol Sci 106(2):221–229CrossRefPubMedGoogle Scholar
  25. 25.
    Sjögrena M, Davidssona P, Tullberga M, Minthonb L, Wallina A, Wikkelsoa C, Granérusc A-K, Vandersticheled H, Vanmechelend E, Blennowa K (2001) Both total and phosphorylated tau are increased in Alzheimer’s disease. J Neurol Neurosurg Psych 70:624–630CrossRefGoogle Scholar
  26. 26.
    Mondragón-Rodríguez S, Basurto-Islas G, Santa-Maria I, Mena R, Binder L, Avila J, Smith MA, Perry G (2008) García-Sierra, cleavage and conformational changes of tau protein follow phosphorylation during Alzheimer’s disease. Int J Exp Pathol 89(2):81–90CrossRefPubMedGoogle Scholar
  27. 27.
    Robertson DS (2004) Possible alternative treatments of Alzheimer’s disease. Med Hypotheses 62:1083–1084CrossRefGoogle Scholar
  28. 28.
    Fishman RA (1980) Cerebrospinal fluid in diseases of the nervous system. W. B. Saunders, PhiladelphiaGoogle Scholar
  29. 29.
    Braun EJ (2003) Regulation of renal and lower gastrointestinal function: role in fluid and electrolyte balance. Comp Biochem Physio A Mol Integr Physiol 136(3):499–505CrossRefGoogle Scholar
  30. 30.
    Freitas RA (1999) Nanomedicine, volume I: basic capabilities. Landes Bioscience, Georgetown, TXGoogle Scholar
  31. 31.
    Baker B, Worthley LIG (2002) The essentials of calcium, magnesium and phosphate metabolism: part I. Physiology. Crit Care Resus 4:301–306Google Scholar
  32. 32.
    Lobo DN (2002) Physiological aspects of fluid and electrolyte balance. The University of Nottingham for the degree of Doctor of Medicine (submitted)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.MalvernUK

Personalised recommendations