Neurochemical Research

, 34:2122 | Cite as

Systemic Oxidative Stress Associated with the Neurological Diseases of Aging

  • Jorge A. Serra
  • Raúl O. Domínguez
  • Enrique R. Marschoff
  • Eduardo M. Guareschi
  • Arturo L. Famulari
  • Alberto Boveris
Original Paper


Markers of oxidative stress were measured in blood samples of 338 subjects (965 observations): Alzheimer’s, vascular dementia, diabetes (type II) superimposed to dementias, Parkinson’s disease and controls. Patients showed increased thiobarbituric acid reactive substances (+21%; P < 0.05), copper-zinc superoxide dismutase (+64%; P < 0.001) and decreased antioxidant capacity (−28%; P < 0.001); pairs of variables resulted linearly related across groups (P < 0.001). Catalase and glutathione peroxidase, involved in discrimination between diseases, resulted non-significant. When diabetes is superimposed with dementias, changes resulted less marked but significant. Also, superoxide dismutase resulted not linearly correlated with any other variable or age-related (pure Alzheimer’s peaks at 70 years, P < 0.001). Systemic oxidative stress was significantly associated (P ≪ 0.001) with all diseases indicating a disbalance in peripheral/adaptive responses to oxidative disorders through different free radical metabolic pathways. While other changes—methionine cycle, insulin correlation—are also associated with dementias, the responses presented here show a simple linear relation between prooxidants and antioxidant defenses.


Free radicals Oxidative stress Aging Alzheimer’s disease Vascular dementia Parkinson disease Type II diabetes mellitus 



This study has been partially supported by a grant from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Fundación Argentina Contra las Enfermedades Neurológicas del Envejecimiento (FACENE) of Argentina.


  1. 1.
    Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine, IV edn. Oxford University Press Inc, New YorkGoogle Scholar
  2. 2.
    Cadenas E, Davies KJ (2000) Mitochondrial free radical generation oxidative stress and aging. Free Radic Biol Med 29:222–230. doi: 10.1016/S0891-5849(00)00317-8 CrossRefPubMedGoogle Scholar
  3. 3.
    Sies H (1985) Oxidative stress. In: Sies H (ed) Oxidative stress: introductory remarks. Academic Press, New York, pp 1–7Google Scholar
  4. 4.
    Boveris A, Repetto MG, Bustamante J (2008) Free radical pathophysiology. In: Álvarez S, Evelson P et al (eds) The concept of oxidative stress in pathology. Transworld Research Network, Kerala, pp 1–17Google Scholar
  5. 5.
    de Lustig ES, Serra JA, Kohan S et al (1993) Copper-zinc superoxide dismutase activity in red blood cells and serum in demented patients and in aging. J Neurol Sci 115:18–25. doi: 10.1016/0022-510X(93)90062-4 CrossRefPubMedGoogle Scholar
  6. 6.
    Serra JA, Famulari AL, Kohan S et al (1994) Copper-zinc superoxide dismutase activity in red blood cells in probable Alzheimer’s patients and their first-degree relatives. J Neurol Sci 122:179–188. doi: 10.1016/0022-510X(94)90297-6 CrossRefPubMedGoogle Scholar
  7. 7.
    Famulari AL, Marschoff ER, Serra JA et al (1996) The antioxidant enzymatic blood profile in Alzheimer’s and vascular diseases. Their association and a possible assay to differentiate demented subjects and controls. J Neurol Sci 141:69–78. doi: 10.1016/0022-510X(96)00163-3 CrossRefPubMedGoogle Scholar
  8. 8.
    Serra JA, Domínguez RO, de Lustig ES et al (2001) Parkinson’s disease is associated with oxidative stress: comparison of peripheral antioxidant profiles in living Parkinson’s, Alzheimer’s and vascular dementia patients. J Neural Transm 108:1135–1148. doi: 10.1007/s007020170003 CrossRefPubMedGoogle Scholar
  9. 9.
    Serra JA, Marschoff ER, Domínguez RO et al (2004) Oxidative stress in Alzheimer’s and vascular dementias: masking of the antioxidant profiles by a concomitant type II diabetes mellitus condition. J Neurol Sci 218:17–24. doi: 10.1016/j.jns.2003.10.004 CrossRefPubMedGoogle Scholar
  10. 10.
    Birkeland KI, Kilhovd B, Thorsby P et al (2003) Heterogeneity of non-insulin-dependent diabetes expressed as variability in insulin sensitivity, beta-cell function and cardiovascular risk profile. Diabet Med 20:37–45. doi: 10.1046/j.1464-5491.2003.00838.x CrossRefPubMedGoogle Scholar
  11. 11.
    Sies H (1991) Role of reactive oxygen species in biological processes. Klin Wochenschr 69:965–968. doi: 10.1007/BF01645140 CrossRefPubMedGoogle Scholar
  12. 12.
    Hughes CP, Berg L, Danziger WL et al (1982) A new clinical scale for the staging of dementia (CDR). Br J Psychiatry 140:566–572. doi: 10.1192/bjp.140.6.566 CrossRefPubMedGoogle Scholar
  13. 13.
    Reisberg B, Ferris S, de León MJ et al (1982) The global deterioration scale for assessment of primary degenerative dementia. Am J Psychiatry 139:1136–1139PubMedGoogle Scholar
  14. 14.
    Hamilton MA (1960) Rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62. doi: 10.1136/jnnp.23.1.56 CrossRefPubMedGoogle Scholar
  15. 15.
    Mc Khan G, Drachman D, Folstein M et al (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS–ADRDA work group under the auspices of the Department of Health and Human Services Task Force of Alzheimer’s disease. Neurology 34:939–944Google Scholar
  16. 16.
    Schwarb S, Koberle S, Spiegel R (1988) The Alzheimer’s disease assessment scale (ADAS): an instrument for early diagnosis of dementia? Int J Geriatr Psychiatry 3:45–53. doi: 10.1002/gps.930030107 CrossRefGoogle Scholar
  17. 17.
    Román GC, Tatemichi TK, Erkinjuntti T et al (1993) Vascular dementia: diagnostic criteria for research studies. Report of the NINDS–AIREN International Workshop. Neurology 43:250–260PubMedGoogle Scholar
  18. 18.
    Mattis S (1976) Mental status examination for organic mental syndrome in the elderly patient. In: Bellak L, Karasu T (eds) Geriatric psychiatry: a handbook for psychiatrists and primary care physicians. Grune and Stratton, New York, pp 77–101Google Scholar
  19. 19.
    Hughes AJ, Ben-Shlomo SE, Daniel SE et al (2001) What features improve the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathological study. Neurology 57:S34–S38PubMedGoogle Scholar
  20. 20.
    Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442PubMedGoogle Scholar
  21. 21.
    The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (2000) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 23:S4–S19Google Scholar
  22. 22.
    American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders (DSM IV). American Psychiatric Association, WashingtonGoogle Scholar
  23. 23.
    Fraga CG, Leibovitz BE, Tappel ALL (1988) Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radic Biol Med 4:155–161. doi: 10.1016/0891-5849(88)90023-8 CrossRefPubMedGoogle Scholar
  24. 24.
    Llesuy SF, Milei J, González Flecha B et al (1988) Myocardial damage induced by doxorubicin’s: hydroperoxide-initiated chemiluminescence. Free Radic Biol Med 8:259–264. doi: 10.1016/0891-5849(90)90071-P CrossRefGoogle Scholar
  25. 25.
    González Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide initiated chemiluminescence: an assay of oxidative in biopsies of heart and liver. Free Radic Biol Med 10:93–100. doi: 10.1016/0891-5849(91)90002-K CrossRefPubMedGoogle Scholar
  26. 26.
    Lissi E, Pascual C, Del Castillo M (1992) Luminol luminescence induced by 2-2′azo-bis (2 amidinopropane) thermolysis. Free Radic Res Commun 17:299–311. doi: 10.3109/10715769209079523 CrossRefPubMedGoogle Scholar
  27. 27.
    Serra JA, Marschoff ER, Domínguez RO et al (2000) Comparison of the determination of superoxide dismutase and antioxidant capacity in neurological patients using two different procedures. Clin Chim Acta 301:87–102. doi: 10.1016/S0009-8981(00)00326-0 CrossRefPubMedGoogle Scholar
  28. 28.
    Misra HP, Fridovich I (1972) The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175PubMedGoogle Scholar
  29. 29.
    Jewett SL, Rocklin AM (1993) Variation of one unit of activity with oxidation rate of organic substrate in indirect superoxide dismutase assays. Anal Biochem 212:555–559. doi: 10.1006/abio.1993.1368 CrossRefPubMedGoogle Scholar
  30. 30.
    Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605PubMedGoogle Scholar
  31. 31.
    Akerbonn TP, Sies H (1981) Assay of glutathione, glutathione disulfides and glutathione mixed disulfides in biological samples. Methods Enzymol 77:373–382. doi: 10.1016/S0076-6879(81)77050-2 CrossRefGoogle Scholar
  32. 32.
    Lowry OH, Rosenbrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  33. 33.
    Morrison DF (1976) Multivariate statistical methods. McGraw-Hill, TokyoGoogle Scholar
  34. 34.
    Sokal RR, Rohlf FJ (1995) Biometry. Freeman WH and Company, New YorkGoogle Scholar
  35. 35.
    Galbusera C, Facheris M, Magni F et al (2004) Increased susceptibility to plasma lipid peroxidation in Alzheimer disease patients. Curr Alzheimer Res 1:103–109. doi: 10.2174/1567205043332171 CrossRefPubMedGoogle Scholar
  36. 36.
    Junqueira VBC, Barros SBM, Chan SS et al (2004) Aging and oxidative stress. Mol Asp Med 25:5–16. doi: 10.1016/j.mam.2004.02.003 CrossRefGoogle Scholar
  37. 37.
    Casado A, Encarnación López-Fernández M, Concepción Casado M et al (2008) Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res 33:450–458. doi: 10.1007/s11064-007-9453-3 CrossRefPubMedGoogle Scholar
  38. 38.
    De Leo ME, Borrello S, Passantino M et al (1998) Oxidative stress and over-expression of manganese superoxide dismutase in patients with Alzheimer’s disease. Neurosci Lett 250:173–176. doi: 10.1016/S0304-3940(98)00469-8 CrossRefPubMedGoogle Scholar
  39. 39.
    Repetto MG, Reides CG, Evelson P et al (1999) Peripheral markers of oxidative stress in probable Alzheimer patients. Eur J Clin Invest 29:643–649. doi: 10.1046/j.1365-2362.1999.00506.x CrossRefPubMedGoogle Scholar
  40. 40.
    Licastro F, Pedrini S, Davis LJ et al (2001) [alpha]-1-Antichymotrypsin and oxidative stress in the peripheral blood from patients with probable Alzheimer disease: a short-term longitudinal study. Alzheimer Dis Assoc Disord 15:51–55. doi: 10.1097/00002093-200101000-00007 CrossRefPubMedGoogle Scholar
  41. 41.
    Rossi L, Squitti R, Pasqualetti P et al (2002) Red blood cell copper, zinc superoxide dismutase activity is higher in Alzheimer’s disease and is decreased by d-penicillamine. Neurosci Lett 329:137–140. doi: 10.1016/S0304-3940(02)00599-2 CrossRefPubMedGoogle Scholar
  42. 42.
    Younes-Mhenni S, Frih-Ayeda M, Kerkeni A et al (2007) Peripheral blood markers of oxidative stress in Parkinson’s disease. Eur Neurol 58:78–83PubMedGoogle Scholar
  43. 43.
    Percy ME, Dalton AJ, Markovic VD et al (1990) Red cell superoxide dismutase, glutathione peroxidase and catalase in Down syndrome patients with and without manifestations of Alzheimer disease. Am J Med Genet 35:459–467. doi: 10.1002/ajmg.1320350403 CrossRefPubMedGoogle Scholar
  44. 44.
    Ceballos-Picot I, Merad-Boudia M, Nicole A et al (1996) Peripheral antioxidant enzyme activities and selenium in elderly subjects and in dementia of Alzheimer’s type—place of the extracellular glutathione peroxidase. Free Radic Biol Med 20:579–587. doi: 10.1016/0891-5849(95)02058-6 CrossRefPubMedGoogle Scholar
  45. 45.
    Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295PubMedGoogle Scholar
  46. 46.
    Misra HP, Fridovich I (1972) The generation of superoxide radical during the autooxidation of hemoglobin. J Biol Chem 247:6960–6962PubMedGoogle Scholar
  47. 47.
    Famulari AL, Bartolomé E, Serra JA et al (1997) Heterogeneity in dementia of Alzheimer’s type: differing clinical onset and evolution is age related. J Neurol Sci 150:S20. doi: 10.1016/S0022-510X(97)84919-2 CrossRefGoogle Scholar
  48. 48.
    Serra JA, Domínguez RO, de Lustig ES et al (2004) Discriminative antioxidant profiles in neurological diseases associated with peripheral oxidative stress. In: Boveris A, Puntarulo S (eds) Proceedings of XII Biennial meeting of the society for free radical research international. Medimond Moduzzi, Bologna, Italy, pp 247–250Google Scholar
  49. 49.
    De La Torre R, Casado A, Encarnación López-Fernández M et al (1999) Superoxide dismutase activity levels in a Spanish population 50–93 years. Am J Hum Biol 11:45–47. doi: 10.1002/(SICI)1520-6300(1999)11:1<45::AID-AJHB4>3.0.CO;2-B CrossRefPubMedGoogle Scholar
  50. 50.
    O’Brien RC, Ling M, Balazs N et al (2000) In vitro and in vivo antioxidant properties of glicazide. J Diabetes Complicat 14:201–206. doi: 10.1016/S1056-8727(00)00084-2 CrossRefPubMedGoogle Scholar
  51. 51.
    Dalle-Donne I, Rossi R, Colombo R et al (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623. doi: 10.1373/clinchem.2005.061408 CrossRefPubMedGoogle Scholar
  52. 52.
    De Felice FG, Vieira MNN, Bomfim TR et al (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc Natl Acad Sci USA 106:1971–1976. doi: 10.1073/pnas.0809158106 CrossRefPubMedGoogle Scholar
  53. 53.
    De Giorgio R, Barbara G, Cecconi A et al (2001) Diabetes is associated with longer survival rates in patients with malignant tumors. Arch Intern Med 161:485. doi: 10.1001/archinte.161.3.485 CrossRefGoogle Scholar
  54. 54.
    Hanbali A (2004) Diabetes has protective effect against metastasis in patients with non-small cell lung cancer. J Clin Oncol 22:7234Google Scholar
  55. 55.
    Hanbali A, Al-Khasawneh K, Cole-Johnson C et al (2007) Protective effect of diabetes against metastasis in patients with non-small cell lung cancer. Arch Intern Med 167:513. doi: 10.1001/archinte.167.5.513-a CrossRefPubMedGoogle Scholar
  56. 56.
    Waters KM, Henderson BE, Stram DO et al (2009) Association of diabetes with prostate cancer risk in the multiethnic cohort. Am J Epidemiol 169:937–945. doi: 10.1093/aje/kwp003 CrossRefPubMedGoogle Scholar
  57. 57.
    Ding Q, Dimayuga E, Keller JN (2007) Oxidative damage, protein synthesis, and protein degradation in Alzheimer disease. Curr Alzheimer Res 4:73–79. doi: 10.2174/156720507779939788 CrossRefPubMedGoogle Scholar
  58. 58.
    Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344. doi: 10.1113/jphysiol.2003.049478 CrossRefPubMedGoogle Scholar
  59. 59.
    Niwa Y, Ishimoto K, Kanoh T (1990) Induction of superoxide dismutase in leukocytes by paraquat: correlation with age and possible predictor of longevity. Blood 76:835–841PubMedGoogle Scholar
  60. 60.
    Romero FJ, Romá J, Bosch-Morell F et al (2000) Reduction of brain antioxidant defense upon treatment with butylated hydroxyanisole (BHA) and Sudan III in Syrian Golden Hamster. Neurochem Res 25:389–393. doi: 10.1023/A:1007549222553 CrossRefPubMedGoogle Scholar
  61. 61.
    Lee TB, Park YH, Min YD et al (2001) Inducibility of superoxide dismutases and metallothionein in the liver and kidney of mice by paraquat with age. Korean J Med 61:430–438Google Scholar
  62. 62.
    Domínguez RO, Marschoff ER, Famulari AL et al (2005) Homocysteine, vitamine B12 and folate in Alzheimer’s and vascular dementias: the paradoxical effect of the superimposed type II diabetes mellitus condition. Clin Chim Acta 359:163–170. doi: 10.1016/j.cccn.2005.03.049 CrossRefPubMedGoogle Scholar
  63. 63.
    Domínguez RO, Marschoff ER, Guareschi EM et al (2008) Insulin, glucose and glycated hemoglobin in Alzheimer’s and vascular dementia with and without superimposed Type II diabetes mellitus condition. J Neural Transm 115:77–84. doi: 10.1007/s00702-007-0804-7 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jorge A. Serra
    • 1
  • Raúl O. Domínguez
    • 2
  • Enrique R. Marschoff
    • 3
  • Eduardo M. Guareschi
    • 4
  • Arturo L. Famulari
    • 5
  • Alberto Boveris
    • 1
  1. 1.Free Radicals Program, Programa de Radicales Libres (PRALIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Oxidative Stress Laboratory, Faculty of Pharmacy and BiochemistryUniversity of Buenos Aires (UBA)Buenos AiresArgentina
  2. 2.Faculty of Medicine, School of Neurology, Hospital Sirio-LibanésUniversity of Buenos Aires (UBA), Fundación Argentina Contra las Enfermedades Neurológicas del Envejecimiento (FACENE)Buenos AiresArgentina
  3. 3.Faculty of Exacts and Natural Sciences, Biological Sciences Department, Laboratory of BiometryUniversity of Buenos Aires (UBA)Buenos AiresArgentina
  4. 4.Laboratory for the Clinical Investigations (LEPLIC)Buenos AiresArgentina
  5. 5.Faculty of Medicine, School of Neurology, Hospital Sirio-Libanés, Institute of Cardiology Research Prof. Dr. Alberto TaquiniUniversity of Buenos Aires (UBA), Fundación Argentina Contra las Enfermedades Neurológicas del Envejecimiento (FACENE)Buenos AiresArgentina

Personalised recommendations