Advertisement

Neurochemical Research

, Volume 34, Issue 11, pp 1962–1968 | Cite as

Regulation of [3H] d-Aspartate Release from Mammalian Isolated Retinae by Hydrogen Sulfide

  • Catherine A. Opere
  • Emmanuel M. Monjok
  • Kaustubh H. Kulkarni
  • Ya Fatou Njie
  • Sunny E. Ohia
Original Paper

Abstract

Hydrogen sulfide (H2S), can produce pharmacological effects on neural and non-neural tissues from several mammalian species. The present study investigates the pharmacological action of H2S, (using sodium hydrosulfide, NaHS, and/or sodium sulfide, Na2S as donors) on amino acid neurotransmission (using [3H] d-aspartate as a marker for glutamate) from isolated, superfused bovine and porcine retinae. Isolated neural retinae were incubated in Krebs solution containing [3H] d-aspartate at 37°C. Release of [3H] d-aspartate was elicited by high potassium (K+ 50 mM) pulse. Both NaHS and Na2S donors caused an inhibition of K+-evoked [3H] d-aspartate release from isolated bovine retinae without affecting basal [3H] d-aspartate efflux yielding IC50 values of 0.006 and 6 μm, respectively. Furthermore, NaHS inhibited depolarization-evoked release of [3H] d-aspartate from isolated porcine retinae with an IC50 value of 8 μM. The inhibitory action of NaHS on [3H] d-aspartate release from porcine retinae was blocked by propargyglycine, a selective inhibitor of cystathionine γ-lyase (CSE). Our results indicate that H2S donors can inhibit amino acid neurotransmission from both isolated bovine and porcine retinae, an effect that is dependent, at least in part, on intramural biosynthesis of H2S.

Keywords

Hydrogen sulfide [3H] d-aspartate Retina Neurotransmission 

Notes

Acknowledgements

We acknowledge the expert secretarial assistance of Ms. Carolyn Wahl (University of Houston) in the preparation of this manuscript.

References

  1. 1.
    Reiffenstein RJ, Hulbert WC, Roth SH (1992) Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 32:109–134. doi: 10.1146/annurev.pa.32.040192.000545 PubMedCrossRefGoogle Scholar
  2. 2.
    Watanabe M, Osada J, Aratani Y, Kluckman K, Reddick R, Malinow MR, Maeda N (1995) Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci USA 92:1585–1589. doi: 10.1073/pnas.92.5.1585 PubMedCrossRefGoogle Scholar
  3. 3.
    Wang R (2003) The gasotransmitter role of hydrogen sulfide. Antioxid Redox Signal 5:493–501. doi: 10.1089/152308603768295249 PubMedCrossRefGoogle Scholar
  4. 4.
    Erickson PF, Maxwell IH, Su LJ, Baumann M, Glode LM (1990) Sequence of cDNA for rat cystathionine gamma-lyase and comparison of deduced amino acid sequence with related Escherichia coli enzymes. Biochem J 269:335–340PubMedGoogle Scholar
  5. 5.
    Stipanuk MH, Beck PW (1982) Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 206:267–277PubMedGoogle Scholar
  6. 6.
    Swaroop M, Bradley K, Ohura T, Tahara T, Roper MD, Rosenberg LE, Kraus JP (1992) Rat cystathionine beta-synthase. Gene organization and alternative splicing. J Biol Chem 267:11455–11461PubMedGoogle Scholar
  7. 7.
    Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531. doi: 10.1006/bbrc.1997.6878 PubMedCrossRefGoogle Scholar
  8. 8.
    Levonen AL, Lapatto R, Saksela M, Raivio KO (2000) Human cystathionine gamma-lyase: developmental and in vitro expression of two isoforms. Biochem J 347(Pt 1):291–295. doi: 10.1042/0264-6021:3470291 PubMedCrossRefGoogle Scholar
  9. 9.
    Lu Y, O’Dowd BF, Orrego H, Israel Y (1992) Cloning and nucleotide sequence of human liver cDNA encoding for cystathionine gamma-lyase. Biochem Biophys Res Commun 189:749–758. doi: 10.1016/0006-291X(92)92265-Y PubMedCrossRefGoogle Scholar
  10. 10.
    Meier M, Janosik M, Kery V, Kraus JP, Burkhard P (2001) Structure of human cystathionine beta-synthase: a unique pyridoxal 5′-phosphate-dependent heme protein. EMBO J 20:3910–3916. doi: 10.1093/emboj/20.15.3910 PubMedCrossRefGoogle Scholar
  11. 11.
    van der Molen EF, Hiipakka MJ, van Lith-Zanders H, Boers GH, van den Heuvel LP, Monnens LA, Blom HJ (1997) Homocysteine metabolism in endothelial cells of a patient homozygous for cystathionine beta-synthase (CS) deficiency. Thromb Haemost 78:827–833PubMedGoogle Scholar
  12. 12.
    Yap S, Naughten ER, Wilcken B, Wilcken DE, Boers GH (2000) Vascular complications of severe hyperhomocysteinemia in patients with homocystinuria due to cystathionine beta-synthase deficiency: effects of homocysteine-lowering therapy. Semin Thromb Hemost 26:335–340. doi: 10.1055/s-2000-8100 PubMedCrossRefGoogle Scholar
  13. 13.
    Persa C, Osmotherly K, Chao-Wei CK, Moon S, Lou MF (2006) The distribution of cystathionine beta-synthase (CBS) in the eye: implication of the presence of a trans-sulfuration pathway for oxidative stress defense. Exp Eye Res 83:817–823. doi: 10.1016/j.exer.2006.04.001 PubMedCrossRefGoogle Scholar
  14. 14.
    Eto K, Ogasawara M, Umemura K, Nagai Y, Kimura H (2002) Hydrogen sulfide is produced in response to neuronal excitation. J Neurosci 22:3386–3391PubMedGoogle Scholar
  15. 15.
    Kimura H (2002) Hydrogen sulfide as a neuromodulator. Mol Neurobiol 26:13–19. doi: 10.1385/MN:26:1:013 PubMedCrossRefGoogle Scholar
  16. 16.
    Moore PK, Bhatia M, Moochhala S (2003) Hydrogen sulfide: from the smell of the past to the mediator of the future? Trends Pharmacol Sci 24:609–611. doi: 10.1016/j.tips.2003.10.007 PubMedCrossRefGoogle Scholar
  17. 17.
    Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798. doi: 10.1096/fj.02-0211hyp PubMedCrossRefGoogle Scholar
  18. 18.
    Boehning D, Snyder SH (2003) Novel neural modulators. Annu Rev Neurosci 26:105–131. doi: 10.1146/annurev.neuro.26.041002.131047 PubMedCrossRefGoogle Scholar
  19. 19.
    Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20:6008–6016. doi: 10.1093/emboj/20.21.6008 PubMedCrossRefGoogle Scholar
  20. 20.
    Zhao W, Wang R (2002) H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 283:H474–H480PubMedGoogle Scholar
  21. 21.
    Roth SH, Skrajny B, Reiffenstein RJ (1995) Alteration of the morphology and neurochemistry of the developing mammalian nervous system by hydrogen sulphide. Clin Exp Pharmacol Physiol 22:379–380. doi: 10.1111/j.1440-1681.1995.tb02024.x PubMedCrossRefGoogle Scholar
  22. 22.
    Skrajny B, Hannah RS, Roth SH (1992) Low concentrations of hydrogen sulphide alter monoamine levels in the developing rat central nervous system. Can J Physiol Pharmacol 70:1515–1518PubMedGoogle Scholar
  23. 23.
    Eto K, Asada T, Arima K, Makifuchi T, Kimura H (2002) Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem Biophys Res Commun 293:1485–1488. doi: 10.1016/S0006-291X(02)00422-9 PubMedCrossRefGoogle Scholar
  24. 24.
    Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071PubMedGoogle Scholar
  25. 25.
    Kulkarni KH, Monjok EM, Zeyssig R, Kouamou G, Bongmba ON, Opere CA, Njie YF, Ohia SE (2009) Effect of Hydrogen Sulfide on Sympathetic Neurotransmission and Catecholamine Levels in Isolated Porcine Iris-Ciliary Body. Neurochem Res 34:400–406PubMedCrossRefGoogle Scholar
  26. 26.
    Monjok EM, Kulkarni KH, Kouamou G, McKoy M, Opere CA, Bongmba ON, Njie YF, Ohia SE (2008) Inhibitory action of hydrogen sulfide on muscarinic receptor-induced contraction of isolated porcine irides. Exp Eye Res 87:612–616PubMedCrossRefGoogle Scholar
  27. 27.
    Opere CA, Monjok EM, Kulkarni KH, Zhao M, WeiDong Z, Ohia SE (2005) Regulation of [3H] d-aspartate release from mammalian isolated retinae by hydrogen sulfide. Invest Ophthalmol Vis Sci 46:E-Abstract 2228Google Scholar
  28. 28.
    Ohia SE, Opere CA, Awe SO, Adams L, Sharif NA (2000) Human, bovine, and rabbit retinal glutamate-induced [3H] d-aspartate release: role in excitotoxicity. Neurochem Res 25:853–860. doi: 10.1023/A:1007525725996 PubMedCrossRefGoogle Scholar
  29. 29.
    Lowicka E, Beltowski J (2007) Hydrogen sulfide (H2S)—the third gas of interest for pharmacologists. Pharmacol Rep 59:4–24PubMedGoogle Scholar
  30. 30.
    Belardinelli MC, Chabli A, Chadefaux-Vekemans B, Kamoun P (2001) Urinary sulfur compounds in down syndrome. Clin Chem 47:1500–1501PubMedGoogle Scholar
  31. 31.
    Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL (2006) Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J 20:2118–2120. doi: 10.1096/fj.06-6270fje PubMedCrossRefGoogle Scholar
  32. 32.
    Beltowski J (2004) Hydrogen sulfide as a biologically active mediator in the cardiovascular system. Postepy Hig Med Dosw (Online) 58:285–291Google Scholar
  33. 33.
    Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Lancaster JR Jr, Darley-Usmar VM, Kraus DW (2005) Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal Biochem 341:40–51. doi: 10.1016/j.ab.2005.03.024 PubMedCrossRefGoogle Scholar
  34. 34.
    Kimura H, Nagai Y, Umemura K, Kimura Y (2005) Physiological roles of hydrogen sulfide: synaptic modulation, neuroprotection, and smooth muscle relaxation. Antioxid Redox Signal 7:795–803. doi: 10.1089/ars.2005.7.795 PubMedCrossRefGoogle Scholar
  35. 35.
    Guidotti TL (1994) Occupational exposure to hydrogen sulfide in the sour gas industry: some unresolved issues. Int Arch Occup Environ Health 66:153–160PubMedCrossRefGoogle Scholar
  36. 36.
    Guidotti TL (1996) Hydrogen sulphide. Occup Med (Lond) 46:367–371Google Scholar
  37. 37.
    Lopez-Colome AM, Roberts PJ (1987) Effect of excitatory amino acid analogues on the release of d-[3H]aspartate from chick retina. Eur J Pharmacol 142:409–417PubMedCrossRefGoogle Scholar
  38. 38.
    al-Zadjali KH, Imler MP, Ohia SE (1994) Inhibitory effect of prostaglandins on dopamine release from the retina. Gen Pharmacol 25:289–296PubMedCrossRefGoogle Scholar
  39. 39.
    Ohia SE, Jumblatt JE (1990) Prejunctional inhibitory effects of prostanoids on sympathetic neurotransmission in the rabbit iris-ciliary body. J Pharmacol Exp Ther 255:11–16PubMedGoogle Scholar
  40. 40.
    Opere C, Tang L, Imler M, Kim J, Okoye M Jr, Ohia S (1997) Regulation of uveal sympathetic neurotransmission by peroxides. Invest Ophthalmol Vis Sci 38:842–847PubMedGoogle Scholar
  41. 41.
    de Mello MC, Klein WL, de Mello FG (1988) l-glutamate evoked release of GABA from cultured avian retina cells does not require glutamate receptor activation. Brain Res 443:166–172PubMedCrossRefGoogle Scholar
  42. 42.
    Santos PF, Duarte CB, Carvalho AP (1996) Glutamate receptor agonists evoked Ca(2+)-dependent and Ca(2+)-independent release of [3H] d-aspartate from cultured chick retina cells. Neurochem Res 21:361–368PubMedCrossRefGoogle Scholar
  43. 43.
    Collin M, Anuar FB, Murch O, Bhatia M, Moore PK, Thiemermann C (2005) Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia. Br J Pharmacol 146:498–505PubMedCrossRefGoogle Scholar
  44. 44.
    Fiorucci S, Antonelli E, Distrutti E, Rizzo G, Mencarelli A, Orlandi S, Zanardo R, Renga B, Di SM, Morelli A, Cirino G, Wallace JL (2005) Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. Gastroenterology 129:1210–1224PubMedCrossRefGoogle Scholar
  45. 45.
    Tamizhselvi R, Moore PK, Bhatia M (2007) Hydrogen sulfide acts as a mediator of inflammation in acute pancreatitis: in vitro studies using isolated mouse pancreatic acinar cells. J Cell Mol Med 11:315–326PubMedCrossRefGoogle Scholar
  46. 46.
    Julian D, Statile JL, Wohlgemuth SE, Arp AJ (2002) Enzymatic hydrogen sulfide production in marine invertebrate tissues. Comp Biochem Physiol A Mol Integr Physiol 133:105–115PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Catherine A. Opere
    • 1
  • Emmanuel M. Monjok
    • 2
  • Kaustubh H. Kulkarni
    • 2
  • Ya Fatou Njie
    • 3
  • Sunny E. Ohia
    • 3
  1. 1.Department of Pharmacy Sciences, School of Pharmacy and Health ProfessionsCreighton UniversityOmahaUSA
  2. 2.Department of Pharmacological and Pharmaceutical Sciences, College of PharmacyUniversity of HoustonHoustonUSA
  3. 3.Department of Pharmaceutical Sciences, College of Pharmacy and Health SciencesTexas Southern UniversityHoustonUSA

Personalised recommendations