Skip to main content

Advertisement

Log in

New Insights into Mechanisms of γ-Diketone-Induced Axonopathy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We analyzed the impact of axonopathy-inducing agents 1,2-diacetylbenzene (1,2-DAB) and 2,5-hexanedione (2,5-HD) on membrane-bound protein disulfide isomerase (mPDI) versus soluble PDI (sPDI), or PDI-family member thioredoxin (THX), and asked whether changes in PDI/THX were associated with production of oxidative/nitrosative species in the Sprague–Dawley rat. We show that 1,2-DAB and 2,5-HD lower the abundance of sPDI and THX. However, the protein expression of mPDI is increased in 1,2-DAB axonopathy and neuroproteins became more S-nitrosylated. The abundance of heme oxygenase-1 (HO-1) and isoforms of nitric oxide synthase (neuronal, endothelial, and inducible NOS) remained unchanged suggesting that S-nitrosylation occured via increased mPDI-transnitrosylation and/or diminished THX-denitrosylation. The transcription of PDI and glucose regulated protein-78 (GRP-78) remained unchanged indicating that post-translational modifications, e.g. S-nitrosylation, mediate the pathogenesis of γ-diketone axonopathy. These findings open opportunities for new therapeutic testing (e.g., supplementation with denitrosylating THX) in γ-diketone-induced axonal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kim MS, Hashemi SB, Spencer PS, Sabri MI (2002) Amino acid and protein targets of 1,2-diacetylbenzene, a potent aromatic γ-diketone that induces proximal neurofilamentous axonopathy. Toxicol Appl Pharmacol 183:55–65. doi:10.1006/taap.2002.9456

    Article  PubMed  CAS  Google Scholar 

  2. LoPachin RM, Jortner BS, Reid ML, Das S (2003) γ-diketone central neuropathy: quantitative morphometric analysis of axons in rat spinal cord white matter regions and nerve roots. Toxicol Appl Pharmacol 193:29–46. doi:10.1016/j.taap.2003.07.005

    Article  PubMed  CAS  Google Scholar 

  3. Spencer PS, Kim MS, Sabri MI (2002) Aromatic as well as aliphatic hydrocarbon solvent axonopathy. Int J Hyg Environ Health 205:131–136. doi:10.1078/1438-4639-00138

    Article  PubMed  CAS  Google Scholar 

  4. Tshala-Katumbay DD, Palmer VS, Kayton RJ, Sabri MI, Spencer PS (2005) A new murine model of giant proximal axonopathy. Acta Neuropathol 109:405–410. doi:10.1007/s00401-005-0982-z

    Article  PubMed  CAS  Google Scholar 

  5. LoPachin RM, Barber DS, Gavin T (2008) Molecular mechanisms of the conjugated α,β-unsaturated carbonyl derivatives: relevance to neurotoxicity and neurodegenerative diseases. Toxicol Sci 104:235–249. doi:10.1093/toxsci/kfm301

    Article  PubMed  CAS  Google Scholar 

  6. Al-Chalabi A, Miller CC (2003) Neurofilaments and neurological disease. Bioessays 25:346–355. doi:10.1002/bies.10251

    Article  PubMed  CAS  Google Scholar 

  7. Delisle MB, Carpenter S (1984) Neurofibrillary axonal swellings and amyotrophic lateral sclerosis. J Neurol Sci 63:241–250. doi:10.1016/0022-510X(84)90199-0

    Article  PubMed  CAS  Google Scholar 

  8. Hirano A, Donnenfeld H, Sasaki S, Nakano I (1984) Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43:461–470. doi:10.1097/00005072-198409000-00001

    Article  PubMed  CAS  Google Scholar 

  9. Okamoto K, Hirai S, Shoji M, Senoh Y, Yamazaki T (1990) Axonal swellings in the corticospinal tracts in amyotrophic lateral sclerosis. Acta Neuropathol 80:222–226. doi:10.1007/BF00308929

    Article  PubMed  CAS  Google Scholar 

  10. Appenzeller-Herzog C, Ellgaard L (2008) The human PDI family: versatility packed into a single fold. Biochim Biophys Acta 1783:535–548. doi:10.1016/j.bbamcr.2007.11.010

    Article  PubMed  CAS  Google Scholar 

  11. Sevier CS, Kaiser CA (2006) Conservation and diversity of the cellular disulfide bond formation pathways. Antioxid Redox Signal 8:797–811. doi:10.1089/ars.2006.8.797

    Article  PubMed  CAS  Google Scholar 

  12. Turano C, Coppari S, Altieri F, Ferraro A (2002) Proteins of the PDI family: unpredicted non-ER locations and functions. J Cell Physiol 193:154–163. doi:10.1002/jcp.10172

    Article  PubMed  CAS  Google Scholar 

  13. Tshala-Katumbay D, Monterroso V, Kayton R, Lasarev M, Sabri M, Spencer P (2008) Probing mechanisms of axonopathy. Part I: protein targets of 1,2-diacetylbenzene, the neurotoxic metabolite of aromatic solvent 1,2-diethylbenzene. Toxicol Sci 105:134–141. doi:10.1093/toxsci/kfn103

    Article  PubMed  CAS  Google Scholar 

  14. Tshala-Katumbay D, Monterroso V, Kayton R, Lasarev M, Sabri M, Spencer P (2009) Probing mechanisms of axonopathy. Part II: protein targets of 2,5-hexanedione, the neurotoxic metabolite of the aliphatic solvent n-hexane. Toxicol Sci 107:482–489. doi:10.1093/toxsci/kfn241

    Article  PubMed  CAS  Google Scholar 

  15. Nakamura T, Lipton SA (2008) Emerging roles of S-nitrosylation in protein misfolding and neurodegenerative diseases. Antioxid Redox Signal 10:87–101. doi:10.1089/ars.2007.1858

    Article  PubMed  CAS  Google Scholar 

  16. Uehara T (2007) Accumulation of misfolded protein through nitrosative stress linked to neurodegenerative disorders. Antioxid Redox Signal 9:597–601. doi:10.1089/ars.2006.1517

    Article  PubMed  CAS  Google Scholar 

  17. Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18:716–731. doi:10.1016/j.semcdb.2007.09.003

    Article  PubMed  CAS  Google Scholar 

  18. Ferrari DM, Soling HD (1999) The protein disulphide-isomerase family: unravelling a string of folds. Biochem J 339(Pt 1):1–10. doi:10.1042/0264-6021:3390001

    Article  PubMed  CAS  Google Scholar 

  19. Benhar M, Forrester MT, Hess DT, Stamler JS (2008) Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320:1050–1054. doi:10.1126/science.1158265

    Article  PubMed  CAS  Google Scholar 

  20. Ramachandran N, Root P, Jiang XM, Hogg PJ, Mutus B (2001) Mechanism of transfer of NO from extracellular S-nitrosothiols into the cytosol by cell-surface protein disulfide isomerase. Proc Natl Acad Sci USA 98:9539–9544. doi:10.1073/pnas.171180998

    Article  PubMed  CAS  Google Scholar 

  21. Zai A, Rudd MA, Scribner AW, Loscalzo J (1999) Cell-surface protein disulfide isomerase catalyzes transnitrosation and regulates intracellular transfer of nitric oxide. J Clin Invest 103:393–399. doi:10.1172/JCI4890

    Article  PubMed  CAS  Google Scholar 

  22. Sengupta R, Ryter SW, Zuckerbraun BS, Tzeng E, Billiar TR, Stoyanovsky DA (2007) Thioredoxin catalyzes the denitrosation of low-molecular mass and protein S-nitrosothiols. Biochemistry 46:8472–8483. doi:10.1021/bi700449x

    Article  PubMed  CAS  Google Scholar 

  23. Lopachin RM, Barber DS, Geohagen BC, Gavin T, He D, Das S (2007) Structure-toxicity analysis of type-2 alkenes: in vitro neurotoxicity. Toxicol Sci 95:136–146. doi:10.1093/toxsci/kfl127

    Article  PubMed  CAS  Google Scholar 

  24. Atkin JD, Farg MA, Turner BJ, Tomas D, Lysaght JA, Nunan J, Rembach A, Nagley P, Beart PM, Cheema SS, Horne MK (2006) Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J Biol Chem 281:30152–30165. doi:10.1074/jbc.M603393200

    Article  PubMed  CAS  Google Scholar 

  25. Atkin JD, Farg MA, Walker AK, McLean C, Tomas D, Horne MK (2008) Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol Dis 30:400–407. doi:10.1016/j.nbd.2008.02.009

    Article  PubMed  CAS  Google Scholar 

  26. Ilieva EV, Ayala V, Jove M, Dalfo E, Cacabelos D, Povedano M, Bellmunt MJ, Ferrer I, Pamplona R, Portero-Otin M (2007) Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130:3111–3123. doi:10.1093/brain/awm190

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The technical expertise of Victor Monterroso (Department of Comparative Medicine, OHSU, Portland OR) is appreciated. Funding: National Institute of Health K01NS052183 and the Oregon Worker Benefit Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desire Tshala-Katumbay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tshala-Katumbay, D., Desjardins, P., Sabri, M. et al. New Insights into Mechanisms of γ-Diketone-Induced Axonopathy. Neurochem Res 34, 1919–1923 (2009). https://doi.org/10.1007/s11064-009-9977-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-9977-9

Keywords

Navigation