Neurochemical Research

, Volume 34, Issue 11, pp 1919–1923 | Cite as

New Insights into Mechanisms of γ-Diketone-Induced Axonopathy

  • Desire Tshala-Katumbay
  • Paul Desjardins
  • Mohammad Sabri
  • Roger Butterworth
  • Peter Spencer
Original Paper


We analyzed the impact of axonopathy-inducing agents 1,2-diacetylbenzene (1,2-DAB) and 2,5-hexanedione (2,5-HD) on membrane-bound protein disulfide isomerase (mPDI) versus soluble PDI (sPDI), or PDI-family member thioredoxin (THX), and asked whether changes in PDI/THX were associated with production of oxidative/nitrosative species in the Sprague–Dawley rat. We show that 1,2-DAB and 2,5-HD lower the abundance of sPDI and THX. However, the protein expression of mPDI is increased in 1,2-DAB axonopathy and neuroproteins became more S-nitrosylated. The abundance of heme oxygenase-1 (HO-1) and isoforms of nitric oxide synthase (neuronal, endothelial, and inducible NOS) remained unchanged suggesting that S-nitrosylation occured via increased mPDI-transnitrosylation and/or diminished THX-denitrosylation. The transcription of PDI and glucose regulated protein-78 (GRP-78) remained unchanged indicating that post-translational modifications, e.g. S-nitrosylation, mediate the pathogenesis of γ-diketone axonopathy. These findings open opportunities for new therapeutic testing (e.g., supplementation with denitrosylating THX) in γ-diketone-induced axonal disease.


1,2-Diacetylbenzene Giant axonopathy 2,5-Hexanedione Protein disulfide isomerase S-nitrosylation Thioredoxin 



The technical expertise of Victor Monterroso (Department of Comparative Medicine, OHSU, Portland OR) is appreciated. Funding: National Institute of Health K01NS052183 and the Oregon Worker Benefit Fund.


  1. 1.
    Kim MS, Hashemi SB, Spencer PS, Sabri MI (2002) Amino acid and protein targets of 1,2-diacetylbenzene, a potent aromatic γ-diketone that induces proximal neurofilamentous axonopathy. Toxicol Appl Pharmacol 183:55–65. doi: 10.1006/taap.2002.9456 PubMedCrossRefGoogle Scholar
  2. 2.
    LoPachin RM, Jortner BS, Reid ML, Das S (2003) γ-diketone central neuropathy: quantitative morphometric analysis of axons in rat spinal cord white matter regions and nerve roots. Toxicol Appl Pharmacol 193:29–46. doi: 10.1016/j.taap.2003.07.005 PubMedCrossRefGoogle Scholar
  3. 3.
    Spencer PS, Kim MS, Sabri MI (2002) Aromatic as well as aliphatic hydrocarbon solvent axonopathy. Int J Hyg Environ Health 205:131–136. doi: 10.1078/1438-4639-00138 PubMedCrossRefGoogle Scholar
  4. 4.
    Tshala-Katumbay DD, Palmer VS, Kayton RJ, Sabri MI, Spencer PS (2005) A new murine model of giant proximal axonopathy. Acta Neuropathol 109:405–410. doi: 10.1007/s00401-005-0982-z PubMedCrossRefGoogle Scholar
  5. 5.
    LoPachin RM, Barber DS, Gavin T (2008) Molecular mechanisms of the conjugated α,β-unsaturated carbonyl derivatives: relevance to neurotoxicity and neurodegenerative diseases. Toxicol Sci 104:235–249. doi: 10.1093/toxsci/kfm301 PubMedCrossRefGoogle Scholar
  6. 6.
    Al-Chalabi A, Miller CC (2003) Neurofilaments and neurological disease. Bioessays 25:346–355. doi: 10.1002/bies.10251 PubMedCrossRefGoogle Scholar
  7. 7.
    Delisle MB, Carpenter S (1984) Neurofibrillary axonal swellings and amyotrophic lateral sclerosis. J Neurol Sci 63:241–250. doi: 10.1016/0022-510X(84)90199-0 PubMedCrossRefGoogle Scholar
  8. 8.
    Hirano A, Donnenfeld H, Sasaki S, Nakano I (1984) Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43:461–470. doi: 10.1097/00005072-198409000-00001 PubMedCrossRefGoogle Scholar
  9. 9.
    Okamoto K, Hirai S, Shoji M, Senoh Y, Yamazaki T (1990) Axonal swellings in the corticospinal tracts in amyotrophic lateral sclerosis. Acta Neuropathol 80:222–226. doi: 10.1007/BF00308929 PubMedCrossRefGoogle Scholar
  10. 10.
    Appenzeller-Herzog C, Ellgaard L (2008) The human PDI family: versatility packed into a single fold. Biochim Biophys Acta 1783:535–548. doi: 10.1016/j.bbamcr.2007.11.010 PubMedCrossRefGoogle Scholar
  11. 11.
    Sevier CS, Kaiser CA (2006) Conservation and diversity of the cellular disulfide bond formation pathways. Antioxid Redox Signal 8:797–811. doi: 10.1089/ars.2006.8.797 PubMedCrossRefGoogle Scholar
  12. 12.
    Turano C, Coppari S, Altieri F, Ferraro A (2002) Proteins of the PDI family: unpredicted non-ER locations and functions. J Cell Physiol 193:154–163. doi: 10.1002/jcp.10172 PubMedCrossRefGoogle Scholar
  13. 13.
    Tshala-Katumbay D, Monterroso V, Kayton R, Lasarev M, Sabri M, Spencer P (2008) Probing mechanisms of axonopathy. Part I: protein targets of 1,2-diacetylbenzene, the neurotoxic metabolite of aromatic solvent 1,2-diethylbenzene. Toxicol Sci 105:134–141. doi: 10.1093/toxsci/kfn103 PubMedCrossRefGoogle Scholar
  14. 14.
    Tshala-Katumbay D, Monterroso V, Kayton R, Lasarev M, Sabri M, Spencer P (2009) Probing mechanisms of axonopathy. Part II: protein targets of 2,5-hexanedione, the neurotoxic metabolite of the aliphatic solvent n-hexane. Toxicol Sci 107:482–489. doi: 10.1093/toxsci/kfn241 PubMedCrossRefGoogle Scholar
  15. 15.
    Nakamura T, Lipton SA (2008) Emerging roles of S-nitrosylation in protein misfolding and neurodegenerative diseases. Antioxid Redox Signal 10:87–101. doi: 10.1089/ars.2007.1858 PubMedCrossRefGoogle Scholar
  16. 16.
    Uehara T (2007) Accumulation of misfolded protein through nitrosative stress linked to neurodegenerative disorders. Antioxid Redox Signal 9:597–601. doi: 10.1089/ars.2006.1517 PubMedCrossRefGoogle Scholar
  17. 17.
    Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18:716–731. doi: 10.1016/j.semcdb.2007.09.003 PubMedCrossRefGoogle Scholar
  18. 18.
    Ferrari DM, Soling HD (1999) The protein disulphide-isomerase family: unravelling a string of folds. Biochem J 339(Pt 1):1–10. doi: 10.1042/0264-6021:3390001 PubMedCrossRefGoogle Scholar
  19. 19.
    Benhar M, Forrester MT, Hess DT, Stamler JS (2008) Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320:1050–1054. doi: 10.1126/science.1158265 PubMedCrossRefGoogle Scholar
  20. 20.
    Ramachandran N, Root P, Jiang XM, Hogg PJ, Mutus B (2001) Mechanism of transfer of NO from extracellular S-nitrosothiols into the cytosol by cell-surface protein disulfide isomerase. Proc Natl Acad Sci USA 98:9539–9544. doi: 10.1073/pnas.171180998 PubMedCrossRefGoogle Scholar
  21. 21.
    Zai A, Rudd MA, Scribner AW, Loscalzo J (1999) Cell-surface protein disulfide isomerase catalyzes transnitrosation and regulates intracellular transfer of nitric oxide. J Clin Invest 103:393–399. doi: 10.1172/JCI4890 PubMedCrossRefGoogle Scholar
  22. 22.
    Sengupta R, Ryter SW, Zuckerbraun BS, Tzeng E, Billiar TR, Stoyanovsky DA (2007) Thioredoxin catalyzes the denitrosation of low-molecular mass and protein S-nitrosothiols. Biochemistry 46:8472–8483. doi: 10.1021/bi700449x PubMedCrossRefGoogle Scholar
  23. 23.
    Lopachin RM, Barber DS, Geohagen BC, Gavin T, He D, Das S (2007) Structure-toxicity analysis of type-2 alkenes: in vitro neurotoxicity. Toxicol Sci 95:136–146. doi: 10.1093/toxsci/kfl127 PubMedCrossRefGoogle Scholar
  24. 24.
    Atkin JD, Farg MA, Turner BJ, Tomas D, Lysaght JA, Nunan J, Rembach A, Nagley P, Beart PM, Cheema SS, Horne MK (2006) Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J Biol Chem 281:30152–30165. doi: 10.1074/jbc.M603393200 PubMedCrossRefGoogle Scholar
  25. 25.
    Atkin JD, Farg MA, Walker AK, McLean C, Tomas D, Horne MK (2008) Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol Dis 30:400–407. doi: 10.1016/j.nbd.2008.02.009 PubMedCrossRefGoogle Scholar
  26. 26.
    Ilieva EV, Ayala V, Jove M, Dalfo E, Cacabelos D, Povedano M, Bellmunt MJ, Ferrer I, Pamplona R, Portero-Otin M (2007) Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130:3111–3123. doi: 10.1093/brain/awm190 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Desire Tshala-Katumbay
    • 1
    • 2
  • Paul Desjardins
    • 3
  • Mohammad Sabri
    • 1
    • 2
  • Roger Butterworth
    • 3
  • Peter Spencer
    • 1
    • 2
  1. 1.Department of NeurologySchool of MedicinePortlandUSA
  2. 2.Center for Research on Occupational & Environmental ToxicologyOregon Health & Science UniversityPortlandUSA
  3. 3.Neuroscience Research UnitSt-Luc HospitalMontrealCanada

Personalised recommendations