Neurochemical Research

, Volume 34, Issue 9, pp 1642–1649 | Cite as

Dimethylarginine Levels in Cerebrospinal Fluid of Hyperacute Ischemic Stroke Patients are Associated with Stroke Severity

  • Raf Brouns
  • Bart Marescau
  • Ilse Possemiers
  • Rishi Sheorajpanday
  • Peter P. De Deyn
Original Paper


We hypothesise that asymmetric and symmetric dimethylarginine (ADMA, SDMA) are released in cerebrospinal fluid (CSF) due to ischemia-induced proteolysis and that CSF dimethylarginines are related to stroke severity. ADMA and SDMA were measured in CSF of 88 patients with ischemic stroke or TIA within 24 h after stroke onset (mean 8.6 h) and in 24 controls. Stroke severity was assessed by the National Institutes of Health Stroke Scale (NIHSS) score at admission. Outcome was evaluated by institutionalization due to stroke and the modified Rankin scale. Dimethylarginine levels were higher in patients with stroke than in TIA patients, who had higher levels than controls and correlated with the NIHSS. Logistic regression analysis confirmed that dimethylarginines were independently associated with stroke severity. The SDMA/ADMA ratio did not differ significantly between controls and stroke patients. CSF dimethylarginine levels are increased in hyperacute ischemic stroke and are associated with stroke severity.


Brain ischemia Dimethylarginines Asymmetric dimethylarginine Symmetric dimethylarginine Cerebrospinal fluid Stroke 



Asymmetric dimethylarginine


Confidence interval


Cerebrospinal fluid


Computed tomography


Exponential β


Modification of diet in renal diseases formula


Modified Rankin scale


Magnetic resonance imaging


National Institutes of Health Stroke Scale


Symmetric dimethylarginine


Total dimethylarginine


Transient ischemic attack



R. B. is a research assistant of the Fund for Scientific research Flanders (FWO-Vlaanderen). This research was also supported by the Institute Born-Bunge; the agreement between the Institute Born-Bunge and the University of Antwerp; the Interuniversity Attraction Poles (IAP) program P6/43 of the Belgian Federal Science Policy Office, Belgium; and the Medical Research Foundation Antwerp.


  1. 1.
    Tran CT, Leiper JM, Vallance P (2003) The DDAH/ADMA/NOS pathway. Atheroscler Suppl 4:33–40. doi: 10.1016/S1567-5688(03)00032-1 PubMedCrossRefGoogle Scholar
  2. 2.
    McBride AE, Silver PA (2001) State of the arg: protein methylation at arginine comes of age. Cell 106:5–8. doi: 10.1016/S0092-8674(01)00423-8 PubMedCrossRefGoogle Scholar
  3. 3.
    Marescau B, Nagels G, Possemiers I et al (1997) Guanidino compounds in serum and urine of nondialyzed patients with chronic renal insufficiency. Metabolism 46:1024–1031. doi: 10.1016/S0026-0495(97)90273-0 PubMedCrossRefGoogle Scholar
  4. 4.
    Martens-Lobenhoffer J, Sulyok E, Czeiter E et al (2007) Determination of cerebrospinal fluid concentrations of arginine and dimethylarginines in patients with subarachnoid haemorrhage. J Neurosci Methods 164:155–160. doi: 10.1016/j.jneumeth.2007.04.005 PubMedCrossRefGoogle Scholar
  5. 5.
    Vallance P, Leone A, Calver A, Collier J, Moncada S (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339:572–575. doi: 10.1016/0140-6736(92)90865-Z PubMedCrossRefGoogle Scholar
  6. 6.
    Selley ML (2003) Increased concentrations of homocysteine and asymmetric dimethylarginine and decreased concentrations of nitric oxide in the plasma of patients with Alzheimer’s disease. Neurobiol Aging 24:903–907. doi: 10.1016/S0197-4580(03)00007-1 PubMedCrossRefGoogle Scholar
  7. 7.
    Arlt S, Schulze F, Eichenlaub M et al (2008) Asymmetrical dimethylarginine is increased in plasma and decreased in cerebrospinal fluid of patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 26:58–64. doi: 10.1159/000144026 PubMedCrossRefGoogle Scholar
  8. 8.
    Abe T, Tohgi H, Murata T, Isobe C, Sato C (2001) Reduction in asymmetrical dimethylarginine, an endogenous nitric oxide synthase inhibitor, in the cerebrospinal fluid during aging and in patients with Alzheimer’s disease. Neurosci Lett 312:177–179. doi: 10.1016/S0304-3940(01)02214-5 PubMedCrossRefGoogle Scholar
  9. 9.
    Mulder C, Wahlund LO, Blomberg M et al (2002) Alzheimer’s disease is not associated with altered concentrations of the nitric oxide synthase inhibitor asymmetric dimethylarginine in cerebrospinal fluid. J Neural Transm 109:1203–1208. doi: 10.1007/s00702-002-0760-1 PubMedCrossRefGoogle Scholar
  10. 10.
    Conte C, Floridi E, Galli F, Aisa C, Floridi A (2005) A new method for the liquid chromatography analysis of methylated arginines in biological fluids and tissues by o-phthaldialdehyde postcolumn derivatization. Anal Biochem 338:347–349. doi: 10.1016/j.ab.2004.11.018 PubMedCrossRefGoogle Scholar
  11. 11.
    Jung CS, Oldfield EH, Harvey-White J et al (2007) Association of an endogenous inhibitor of nitric oxide synthase with cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 107:945–950. doi: 10.3171/JNS-07/11/0945 PubMedCrossRefGoogle Scholar
  12. 12.
    O’Kane RL, Vina JR, Simpson I, Zaragoza R, Mokashi A, Hawkins RA (2006) Cationic amino acid transport across the blood-brain barrier is mediated exclusively by system y+. Am J Physiol Endocrinol Metab 291:E412–E419. doi: 10.1152/ajpendo.00007.2006 PubMedCrossRefGoogle Scholar
  13. 13.
    Go KG (1997) The normal and pathological physiology of brain water. Adv Tech Stand Neurosurg 23:47–142PubMedGoogle Scholar
  14. 14.
    Brouns R, Sheorajpanday R, Wauters A, De Surgeloose D, Marien P, De Deyn PP (2008) Evaluation of lactate as a marker of metabolic stress and cause of secondary damage in acute ischemic stroke or TIA. Clin Chim Acta 397:27–31. doi: 10.1016/j.cca.2008.07.016 PubMedCrossRefGoogle Scholar
  15. 15.
    Brouns R, Heylen E, Sheorajpanday R et al (2009) Carboxypeptidase U (TAFIa) decreases the efficacy of thrombolytic therapy in ischemic stroke patients. Clin Neurol Neurosurg 111:165–170. doi: 10.1016/j.clineuro.2008.09.002 PubMedCrossRefGoogle Scholar
  16. 16.
    Brouns R, Sheorajpanday R, Kunnen J, De Surgeloose D, De Deyn PP (2009) Clinical, biochemical and neuroimaging parameters after thrombolytic therapy predict long-term stroke outcome. Eur Neurol 774Google Scholar
  17. 17.
    Albers GW, Caplan LR, Easton JD et al (2002) Transient ischemic attack—proposal for a new definition. N Engl J Med 347:1713–1716. doi: 10.1056/NEJMsb020987 PubMedCrossRefGoogle Scholar
  18. 18.
    Brott T, Adams HP Jr, Olinger CP et al (1989) Measurements of acute cerebral infarction: a clinical examination scale. Stroke 20:864–870PubMedGoogle Scholar
  19. 19.
    The European Stroke Organisation (ESO) Executive Committee and the ESO Writing Committee (2008) Guidelines for management of ischaemic stroke and transient ischaemic attack 2008. Cerebrovasc Dis 25:457–507. doi: 10.1159/000131083 Google Scholar
  20. 20.
    Adams HP Jr, Bendixen BH, Kappelle LJ et al (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke 24:35–41PubMedGoogle Scholar
  21. 21.
    Boger RH, Bode-Boger SM, Szuba A et al (1998) Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation 98:1842–1847PubMedGoogle Scholar
  22. 22.
    Rawal N, Lee YJ, Paik WK, Kim S (1992) Studies on NG-methylarginine derivatives in myelin basic protein from developing and mutant mouse brain. Biochem J 287:929–935PubMedGoogle Scholar
  23. 23.
    Al Banchaabouchi M, Marescau B, Possemiers I, D’Hooge R, Levillain O, De Deyn PPNG (2000) NG-dimethylarginine and NG, NG-dimethylarginine in renal insufficiency. Pflugers Arch 439:524–531. doi: 10.1007/s004240050973 PubMedCrossRefGoogle Scholar
  24. 24.
    Gobin YP, Starkman S, Duckwiler GR et al (2004) MERCI 1: a phase 1 study of mechanical embolus removal in cerebral ischemia. Stroke 35:2848–2854. doi: 10.1161/01.STR.0000147718.12954.60 PubMedCrossRefGoogle Scholar
  25. 25.
    Sulter G, Steen C, De Keyser J (1999) Use of the Barthel index and modified Rankin scale in acute stroke trials. Stroke 30:1538–1541PubMedGoogle Scholar
  26. 26.
    Duncan PW, Jorgensen HS, Wade DT (2000) Outcome measures in acute stroke trials: a systematic review and some recommendations to improve practice. Stroke 31:1429–1438PubMedGoogle Scholar
  27. 27.
    Ogawa T, Kimoto M, Sasaoka K (1989) Purification and properties of a new enzyme, NG, NG-dimethylarginine dimethylaminohydrolase, from rat kidney. J Biol Chem 264:10205–10209PubMedGoogle Scholar
  28. 28.
    Kakimoto Y, Akazawa S (1970) Isolation and identification of N-G, N-G- and N-G, N’-G-dimethyl-arginine, N-epsilon-mono-, di-, and trimethyllysine, and glucosylgalactosyl- and galactosyl-delta-hydroxylysine from human urine. J Biol Chem 245:5751–5758PubMedGoogle Scholar
  29. 29.
    MacAllister RJ, Whitley GS, Vallance P (1994) Effects of guanidino and uremic compounds on nitric oxide pathways. Kidney Int 45:737–742. doi: 10.1038/ki.1994.98 PubMedCrossRefGoogle Scholar
  30. 30.
    Cooke JP (2004) Asymmetrical dimethylarginine: the Uber marker? Circulation 109:1813–1818. doi: 10.1161/01.CIR.0000126823.07732.D5 PubMedCrossRefGoogle Scholar
  31. 31.
    Calver A, Collier J, Vallance P (1993) Nitric oxide and the control of human vascular tone in health and disease. Eur J Med 2:48–53PubMedGoogle Scholar
  32. 32.
    Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424. doi: 10.1152/physrev.00029.2006 PubMedCrossRefGoogle Scholar
  33. 33.
    Chan JR, Boger RH, Bode-Boger SM et al (2000) Asymmetric dimethylarginine increases mononuclear cell adhesiveness in hypercholesterolemic humans. Arterioscler Thromb Vasc Biol 20:1040–1046PubMedGoogle Scholar
  34. 34.
    Kielstein JT, Donnerstag F, Gasper S et al (2006) ADMA increases arterial stiffness and decreases cerebral blood flow in humans. Stroke 37:2024–2029. doi: 10.1161/01.STR.0000231640.32543.11 PubMedCrossRefGoogle Scholar
  35. 35.
    Pullamsetti S, Kiss L, Ghofrani HA et al (2005) Increased levels and reduced catabolism of asymmetric and symmetric dimethylarginines in pulmonary hypertension. FASEB J 19:1175–1177PubMedGoogle Scholar
  36. 36.
    Sydow K, Munzel T (2003) ADMA and oxidative stress. Atheroscler Suppl 4:41–51. doi: 10.1016/S1567-5688(03)00033-3 PubMedCrossRefGoogle Scholar
  37. 37.
    MacAllister RJ, Parry H, Kimoto M et al (1996) Regulation of nitric oxide synthesis by dimethylarginine dimethylaminohydrolase. Br J Pharmacol 119:1533–1540PubMedGoogle Scholar
  38. 38.
    Kazmierski R (2006) Predictors of early mortality in patients with ischemic stroke. Expert Rev Neurother 6:1349–1362. doi: 10.1586/14737175.6.9.1349 PubMedCrossRefGoogle Scholar
  39. 39.
    Miyazaki H, Matsuoka H, Cooke JP et al (1999) Endogenous nitric oxide synthase inhibitor: a novel marker of atherosclerosis. Circulation 99:1141–1146PubMedGoogle Scholar
  40. 40.
    Khan U, Hassan A, Vallance P, Markus HS (2007) Asymmetric dimethylarginine in cerebral small vessel disease. Stroke 38:411–413. doi: 10.1161/ PubMedCrossRefGoogle Scholar
  41. 41.
    Wanby P, Teerlink T, Brudin L et al (2006) Asymmetric dimethylarginine (ADMA) as a risk marker for stroke and TIA in a Swedish population. Atherosclerosis 185:271–277. doi: 10.1016/j.atherosclerosis.2005.06.033 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Raf Brouns
    • 1
    • 2
    • 3
  • Bart Marescau
    • 3
  • Ilse Possemiers
    • 3
  • Rishi Sheorajpanday
    • 2
    • 3
  • Peter P. De Deyn
    • 2
    • 3
  1. 1.Department of NeurologyUniversity Hospital Brussels, Vrije Universiteit BrusselBrusselsBelgium
  2. 2.Department of Neurology and Memory ClinicZNA Middelheim HospitalAntwerpBelgium
  3. 3.Laboratory for Neurochemistry and Behaviour, Institute Born-Bunge, Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium

Personalised recommendations