Neurochemical Research

, Volume 34, Issue 8, pp 1513–1521 | Cite as

Comparative Effects of Acute or Chronic Administration of Levodopa to 6-OHDA-lesioned Rats on the Expression and Phosphorylation of N-methyl-d-aspartate Receptor NR1 Subunits in the Striatum

Original Paper


N-methyl-d-aspartate receptor (NMDA) has been increasingly implicated in the formation and maintenance of various forms of behavioral and synaptic plasticity. Recent evidence has linked striatal NMDA function to the adverse effects of long-term dopaminergic treatment in Parkinson’s disease. The subcellular distribution and phosphorylation of NMDA subunit, NR1, reflects NMDA receptor activity. To elucidate molecular mechanisms that underlie the persisting alterations in motor response occurring with levodopa treatment of parkinsonian patients, we evaluated the effects of unilateral nigrostriatal depletion with 6-hydroxydopamine and subsequent levodopa treatment on motor responses and NR1 alterations. Three weeks of levodopa administration to rats shortened the rotational duration and increased the peak turning responses, which lasted after withdrawal of chronic levodopa treatment. We found a significant reduction in the abundance of both phosphorylated NR1 on serine residues 890 and 896 (pNR1S890 and pNR1S896) and NR1 in the cell plasma membrane of lesioned striatum. Chronic treatment of lesioned rats with levodopa markedly upregulated pNR1S890, pNR1S896, and pNR1S897 in lesioned striatum with a concomitant normalization of the plasma membrane NR1 abundance. The magnitude of increased pNR1S890, pNR1S896, and pNR1S897 is dependent on the number of levodopa injections and is paralleled by a sensitization of the rotational response. Our data indicate that glutamate signaling is triggered during the levodopa administration. Activated NMDA receptor NR1-mediated mechanisms are involved in the persistent expression of the motor response alterations that appear during chronic levodopa therapy of parkinsonian rats and continue after treatment withdrawal.


NR1 Phosphorylation Withdrawal Levodopa PD 



This study was supported by the Project Sponsored by the Shanghai Pujiang Program, Shanghai-Philips Research and Development Funds, Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry and the Post-Project of Excellent Young Medical Person of Xihhua Hospital of Shanghai, China.


  1. 1.
    Standaert DG, Stern MB (1993) Update on the management of Parkinson’s disease. Med Clin North Am 77:169–183PubMedGoogle Scholar
  2. 2.
    Mouradian MM, Heuser IJ, Baronti F et al (1990) Modification of central dopaminergic mechanisms by continuous levodopa therapy for advanced Parkinson’s disease. Ann Neurol 27:18–23. doi: 10.1002/ana.410270105 PubMedCrossRefGoogle Scholar
  3. 3.
    Chase TN, Oh JD (2000) Striatal mechanisms and pathogenesis of Parkinsonian signs and motor complications. Ann Neurol 47:S122–S129. doi: 10.1002/1531-8249(200001)47:1<122::AID-ANA21>3.0.CO;2-9 PubMedCrossRefGoogle Scholar
  4. 4.
    Obeso JA, Rodriguez-Oroz MC, Chana P et al (2000) The evolution and origin of motor complications in Parkinson’s disease. Neurology 55:S13–S20PubMedGoogle Scholar
  5. 5.
    Chase TN, Oh JD (2000) Striatal dopamine- and glutamate-mediated dysregulation in experimental parkinsonism. Trends Neurosci 23:S86–S91. doi: 10.1016/S1471-1931(00)00018-5 PubMedCrossRefGoogle Scholar
  6. 6.
    Calon F, Morissette M, Ghribi O et al (2002) Alteration of glutamate receptors in the striatum of dyskinetic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinetreated monkeys following dopamine agonist treatment. Prog Neuropsychopharmacol Biol Psychiatry 26:127–138. doi: 10.1016/S0278-5846(01)00237-8 PubMedCrossRefGoogle Scholar
  7. 7.
    Graybiel AM, Canales JJ, Capper-Loup C (2000) Levodopa-induced dyskinesias and dopamine-dependent stereotypies: a new hypothesis. Trends Neurosci 23:71–77. doi: 10.1016/S1471-1931(00)00027-6 CrossRefGoogle Scholar
  8. 8.
    Bibbiani F, Oh JD, Kielaite A et al (2005) Combined blockade of AMPA and NMDA glutamate receptors reduces levodopa-induced motor complications in animal models of PD. Exp Neurol 196:422–429. doi: 10.1016/j.expneurol.2005.08.017 PubMedCrossRefGoogle Scholar
  9. 9.
    Blanchet PJ, Papa SM, Metman LV et al (1997) Modulation of levodopa-induced motor response complications by NMDA antagonists in Parkinson’s disease. Neurosci Biobehav Rev 21:447–453. doi: 10.1016/S0149-7634(96)00038-3 PubMedCrossRefGoogle Scholar
  10. 10.
    Marin C, Papa S, Engber TM et al (1996) MK-801 prevents levodopa-induced motor response alterations in parkinsonian rats. Brain Res 736:202–205. doi: 10.1016/0006-8993(96)00693-2 PubMedCrossRefGoogle Scholar
  11. 11.
    Chase TN, Oh JD, Blanchet PJ (1998) Neostriatal mechanisms in Parkinson’s disease. Neurology 51:S30–S35PubMedGoogle Scholar
  12. 12.
    Oh JD, Chase TN (2002) Glutamate-mediated striatal dysregulation and the pathogenesis of motor response complications in Parkinson’s disease. Amino Acids 23:133–139. doi: 10.1007/s00726-001-0118-2 PubMedCrossRefGoogle Scholar
  13. 13.
    Dingledine R, Borges K, Bowie D et al (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61PubMedGoogle Scholar
  14. 14.
    Stephenson FA (2001) Subunit characterization of NMDA receptors. Curr Drug Targets 2:233–239. doi: 10.2174/1389450013348461 PubMedCrossRefGoogle Scholar
  15. 15.
    Betarbet R, Poisik O, Sherer TB et al (2004) Differential expression and ser897 phosphorylation of striatal N-methyl-d-aspartate receptor subunit NR1 in animal models of Parkinson’s disease. Exp Neurol 187:76–85. doi: 10.1016/j.expneurol.2003.12.012 PubMedCrossRefGoogle Scholar
  16. 16.
    Tingley WG, Ehlers MD, Kameyama K et al (1997) Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-d-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J Biol Chem 272:5157–5166. doi: 10.1074/jbc.272.8.5157 PubMedCrossRefGoogle Scholar
  17. 17.
    Liu Z, Mao L, Parelkar NK et al (2004) Distinct expression of phosphorylated N-methyl-d-aspartate receptor NR1 subunits by projection neurons and interneurons in the striatum of normal and amphetamine-treated rats. J Comp Neurol 474:393–406. doi: 10.1002/cne.20136 PubMedCrossRefGoogle Scholar
  18. 18.
    Dunah AW, Standaert DG (2001) Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 21:5546–5558PubMedGoogle Scholar
  19. 19.
    Dunah AW, Wang Y, Yasuda RP et al (2000) Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-d-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson’s disease. Mol Pharmacol 57:342–352PubMedGoogle Scholar
  20. 20.
    Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, LondonGoogle Scholar
  21. 21.
    Papa SM, Engber TM, Kask AM et al (1994) Motor fluctuations in levodopa treated parkinsonian rats: relation to lesion extent and treatment duration. Brain Res 662:69–74. doi: 10.1016/0006-8993(94)90796-X PubMedCrossRefGoogle Scholar
  22. 22.
    Shi SH, Hayashi Y, Petralia RS et al (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Sci Wash DC 284:1811–1816. doi: 10.1126/science.284.5421.1811 CrossRefGoogle Scholar
  23. 23.
    Greenamyre JT (2000) New targets for therapy in Parkinson’s disease: pathogenesis and pathophysiology. Neurol (Tokyo) 15:67–80Google Scholar
  24. 24.
    Starr MS (1995) Glutamate/dopamine D1/D2 balance in the basal ganglia and its relevance to Parkinson’s disease. Synapse 19:264–293. doi: 10.1002/syn.890190405 PubMedCrossRefGoogle Scholar
  25. 25.
    Lange KW, Kornhuber J, Riederer P (1997) Dopamine/glutamate interactions in Parkinson’s disease. Neurosci Biobehav Rev 21:393–400. doi: 10.1016/S0149-7634(96)00043-7 PubMedCrossRefGoogle Scholar
  26. 26.
    Liste I, Munoz A, Guerra MJ et al (2000) Fenfluramineinduced increase in preproenkephalin mRNA levels in the striatum: interaction between the serotonergic, glutamatergic, and dopaminergic systems. Synapse 35:182–191. doi: 10.1002/(SICI)1098-2396(20000301)35:3<182::AID-SYN3>3.0.CO;2-T PubMedCrossRefGoogle Scholar
  27. 27.
    Raymond LA, Tingley WG, Blackstone CD et al (1994) Glutamate receptor modulation by protein phosphorylation. J Physiol (Paris) 88:181–192. doi: 10.1016/0928-4257(94)90004-3 CrossRefGoogle Scholar
  28. 28.
    Sigel E (1995) Functional modulation of ligand-gated GABAA and NMDA receptor channels by phosphorylation. J Recept Signal Transduct Res 15:325–332. doi: 10.3109/10799899509045224 PubMedCrossRefGoogle Scholar
  29. 29.
    Westin JE, Andersson M, Lundblad M et al (2001) Persistent changes in striatal gene expression induced by long-term L-DOPA treatment in a rat model of Parkinson’s disease. Eur J NeuroSci 7:1171–1176. doi: 10.1046/j.0953-816x.2001.01743.x CrossRefGoogle Scholar
  30. 30.
    Calon F, Grondin R, Morissette M et al (2000) Molecular basis of levodopa-induced dyskinesias. Ann Neurol 47:70–78Google Scholar
  31. 31.
    Calon F, Rajput AH, Hornykiewicz O et al (2003) Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson’s disease. Neurobiol Dis 14:404–416. doi: 10.1016/j.nbd.2003.07.003 PubMedCrossRefGoogle Scholar
  32. 32.
    Hisatsune C, Umemori H, Inoue T et al (1997) Phosphorylation-dependent regulation of N-methyl-d-aspartate receptors by calmodulin. J Biol Chem 272:20805–20810. doi: 10.1074/jbc.272.33.20805 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of NeurologyXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiPeople’s Republic of China
  2. 2.Department of NeurologyYuhuangding Hospital Affiliated to Qingdao Medical UniversityShandongPeople’s Republic of China

Personalised recommendations