Neurochemical Research

, Volume 35, Issue 6, pp 934–939 | Cite as

Proline-Rich Hypothalamic Polypeptide Has Opposite Effects on the Proliferation of Human Normal Bone Marrow Stromal Cells and Human Giant-cell Tumour Stromal Cells

  • R. K. Chailakhyan
  • Yu. V. Gerasimov
  • M. R. Chailakhyan
Original Paper


In the present study we carried out experiments in vitro and in vivo and investigated the effect of proline-rich polypeptide (PRP) on the proliferation and effectiveness of colony formation of MMSCs in vitro. Various routes and doses of PRP administration to rats increased the number of MMSCs in bone marrow and spleen. Our research revealed opposite effects of PRP on the proliferation of bone marrow stromal cells obtained from normal humans and stromal cells isolated from a human giant-cell tumour.


Proline-rich polypeptide (PRP) Giant-cell tumour (GCT) Multipotent mesenchymal stromal cells (MMSCs) Bone marrow 



Authors express profound gratitude to Ac.A.A. Galoyan for kindly furnished PRP preparation as well as for his participation and interest to our work and discussion of obtained results.


  1. 1.
    Galoyan AA (2000) Neurochemistry of brain neuroendocrine immune system: signal molecules. Neurochem Res 25(9/10):1343–1355CrossRefPubMedGoogle Scholar
  2. 2.
    Chailakhyan RK, Latsinik NV, Shamsutdinov AG et al (2002) Factors influencing the effectiveness of clonal expansion of cells which form fibroblast colonies in human bone marrow cultures. Dokl Akad Nauk 382(3):417–420Google Scholar
  3. 3.
    Latsinik NV, Sidorovich SYu, Fridenstein AJ (1981) The influence of bone marrow trypsinization on the effectiveness of fibroblast colony formation in monolayer cultures. Bull Exp Biol Med 9:356–360Google Scholar
  4. 4.
    Chailakhyan RK, Lalykina KS (1969) Spontaneous and induced differentiation of bone tissue in a population of fibroblast-like cells obtained from sustained monolayer cultures of bone marrow and spleen. Dokl Akad Nauk USSR 187(2):473–479Google Scholar
  5. 5.
    Chailakhyan RK, Fridenstein AJ, Vasilyev AV (1970) Clone formation in monolayer cultures of bone marrow. Bull Exp Biol Med 2:94–96Google Scholar
  6. 6.
    Fridenstein AJ, Chailakhyan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403Google Scholar
  7. 7.
    Latsinik NV, Grosheva AG, Narovlyansky AN et al (1987) The clonal nature of fibroblast colonies formed by bone marrow stromal cells in cultures. Bull Exp Biol Med 3:356–358Google Scholar
  8. 8.
    Keilis-Borok IV, Latsinik NV, SYu Epichina et al (1971) Fibroblast colony formation in bone marrow monolayer colonies assessed by H3 thymidine inclusion findings. Tsitologiya 8(11):1402–1409Google Scholar
  9. 9.
    Gerassimov YuV, Chailakhyan RK, Latsinik NV et al (2001) Changes in the numbers of clonogenic stromal precursor cells in the hemopoietic and lymphoid organs during bone marrow regeneration. Izvestiya Akad Nauk Biol Ser 6:693–703Google Scholar
  10. 10.
    Satomura K, Derubeis AR, Fedarko NS et al (1998) Receptor tyrosine kinase expression in human bone marrow stromal cells. J Cell Physiol 177:426–438CrossRefPubMedGoogle Scholar
  11. 11.
    Owen M (1988) Marrow stromal stem cells. J Cell Sci 10:63–76Google Scholar
  12. 12.
    Gronthos S, Simmons PJ (1995) The growth factor requirements of STRO-1 positive human bone marrow stromal precursor under serum-deprived conditions in vitro. Blood 85(4):929–940PubMedGoogle Scholar
  13. 13.
    Solchaga LA, Penik K, Porter WA et al (2005) FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol 203(2):398–409CrossRefPubMedGoogle Scholar
  14. 14.
    Hankemeier S, Keus M, Ziechen J et al (2005) Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng 11(1–2):41–49CrossRefPubMedGoogle Scholar
  15. 15.
    Bianco P, Riminicci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology and potential applications. Stem Cells 19(3):180–192CrossRefPubMedGoogle Scholar
  16. 16.
    Dominici M, Blanc K, Slaper-Cortenbach I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy: position statement. Cytotherapy 8(4):315–317CrossRefPubMedGoogle Scholar
  17. 17.
    De Laat SW, Boonstra J, Defisel HK et al (1999) Growth factor signaling. Int J Dev Biol 43:681–691PubMedGoogle Scholar
  18. 18.
    Tsutsumi S, Shimazu A, Miyazaki K et al (2001) Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun 288(2):413–419CrossRefPubMedGoogle Scholar
  19. 19.
    Kilian O, Flesch I, Wenisch S et al (2004) Effects of platelet growth factor on human mesenchymal stem cells and human endothelial cells in vitro. Eur J Med Res 9(7):337–344PubMedGoogle Scholar
  20. 20.
    Tamama K, Fan VH, Griffith LG et al (2006) Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells. Stem Cells 24(3):686–695CrossRefPubMedGoogle Scholar
  21. 21.
    Galoyan AA, Aprikyan VS (2002) A new hypothalamic polypeptide is a regulator of myelopoiesis. Neurochem Res 27(4):305–312CrossRefPubMedGoogle Scholar
  22. 22.
    Galoyan AA, Korochkin LI, Rubalkina EI (2008) Hypothalamic proline-rich polypeptide enhances bone marrow colony-forming cell proliferation and stromal progenitor cell differentiation. Cell Transplant 17:1–6CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • R. K. Chailakhyan
    • 1
  • Yu. V. Gerasimov
    • 1
  • M. R. Chailakhyan
    • 1
  1. 1.Gamaleya Research Institute of Epidemiology and MicrobiologyRussian Academy of Medical SciencesMoscowRussian Federation

Personalised recommendations