Neurochemical Research

, Volume 35, Issue 4, pp 559–563 | Cite as

Changes in Extracellular Kynurenic Acid Concentrations in Rat Prefrontal Cortex After d-Kynurenine Infusion: An In vivo Microdialysis Study

  • Tadahiro Ogaya
  • Ziyu Song
  • Kana Ishii
  • Takeshi Fukushima
Original Paper


Using a microdialysis technique, we continuously infused d-kynurenine (KYN) (0, 50, and 100 μM) into the prefrontal cortices (PFCs) of male Sprague–Dawley rats. We then used column-switching high-performance liquid chromatography to assess the alterations in the concentration of kynurenic acid (KYNA)—an antagonist of N-methyl-d-aspartate and α7 nicotinic acetylcholine receptors—in the extracellular fluid in the PFC. Local infusion of d-KYN into the PFC remarkably increased the extracellular KYNA concentration, indicating that d-KYN is metabolized to KYNA in the PFC. The d-KYN-induced increase in KYNA levels was significantly attenuated by the co-administration of 3-methylpyrazole-5-carboxylic acid (AS057278)—a specific inhibitor of d-amino acid oxidase (DAAO). These results suggest that DAAO may be involved in the production of KYNA from d-KYN in the PFC in vivo.


d-Kynurenine Kynurenic acid Brain microdialysis d-Amino acid oxidase Column-switching high-performance liquid chromatography 



We thank Dr. M. Sato, Toho University, for his helpful discussions on this study.


  1. 1.
    Borchers R, Berg CP, Whitman NE (1942) Tryptophane metabolism. X. The effect of feeding l(−)-, dl-, and d(+)-tryptophane, d(−)- and dl-β-3-indolelactic acid, β-3-indolepyruvic acid, and l(−)-kynurenine upon the storage of liver glycogen and the urinary output of kynurenic acid, kynurenine, and total acetone bodies. J Biol Chem 145:657–666Google Scholar
  2. 2.
    Leklem JE (1971) Quantitative aspects of tryptophan metabolism in humans and other species: a review. Amer J Clin Nutr 24:659–672PubMedGoogle Scholar
  3. 3.
    Mason M, Berg CP (1952) The metabolism of d- and l-tryptophan and d- and l-kynurenine by liver and kidney preparations. J Biol Chem 195:515–524PubMedGoogle Scholar
  4. 4.
    Langner RR, Berg CP (1955) Metabolism of d-tryptophan in the normal human subject. J Biol Chem 214:699–707PubMedGoogle Scholar
  5. 5.
    Higuchi K, Hayaishi O (1967) Enzymic formation of d-kynurenine from d-tryptophan. Arch Biochem Biophys 120:397–403CrossRefPubMedGoogle Scholar
  6. 6.
    Loh HH, Berg CP (1971) Production of d-kynurenine and other metabolites from d-tryptophan by the intact rabbit and by rabbit tissue. J Nutr 101:465–475PubMedGoogle Scholar
  7. 7.
    Moroni F (1999) Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol 375:87–100CrossRefPubMedGoogle Scholar
  8. 8.
    Nemeth H, Toldi J, Vecsei L (2005) Role of kynurenines in the central and peripheral nervous systems. Curr Neurovascul Res 2:249–260CrossRefGoogle Scholar
  9. 9.
    Ruddick JP, Evans AK, Nutt DJ et al (2006) Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med 8:1–27CrossRefPubMedGoogle Scholar
  10. 10.
    Hashimoto K, Koike K, Shimizu E et al (2005) α7 Nicotinic receptor agonists as potential therapeutic drugs for schizophrenia. Curr Med Chem Cent Nerv Syst Ag 5:171–184CrossRefGoogle Scholar
  11. 11.
    Swartz KJ, During MJ, Freese A et al (1990) Cerebral synthesis and release of kynurenic acid: an endogenous antagonist of excitatory amino acid receptors. J Neurosci 10:2965–2973PubMedGoogle Scholar
  12. 12.
    Hilmas C, Pereira EFR, Alkondon M et al (2001) The brain metabolite kynurenic acid inhibits α7 nicotinic receptor activity and increases non-α7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473PubMedGoogle Scholar
  13. 13.
    Schwarcz R, Rassoulpour A, Wu HQ et al (2001) Increased cortical kynurenate content in schizophrenia. Biol Psychiatr 50:521–530CrossRefGoogle Scholar
  14. 14.
    Erhardt S, Blennow K, Nordin C et al (2001) Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett 313:96–98CrossRefPubMedGoogle Scholar
  15. 15.
    Nilsson LK, Linderholm KR, Engberg G et al (2005) Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophr Res 80:315–322CrossRefPubMedGoogle Scholar
  16. 16.
    Erhardt S, Schwieler L, Nilsson L et al (2007) The kynurenic acid hypothesis of schizophrenia. Physiol Behav 92:203–209CrossRefPubMedGoogle Scholar
  17. 17.
    Okuno E, Schmidt W, Parks DA et al (1991) Measurement of rat brain kynurenine aminotransferase at physiological kynurenine concentrations. J Neurochem 57:533–540CrossRefPubMedGoogle Scholar
  18. 18.
    Guidetti P, Okuno E, Schwarcz R (1997) Characterization of rat brain kynurenine aminotransferases I and II. J Neurosci Res 50:457–465CrossRefPubMedGoogle Scholar
  19. 19.
    Rossi F, Han Q, Li J et al (2004) Crystal structure of human kynurenine aminotransferase I. J Biol Chem 279:50214–50220CrossRefPubMedGoogle Scholar
  20. 20.
    Han Q, Robinson H, Li J (2008) Crystal structure of human kynurenine aminotransferase II. J Biol Chem 283:3567–3573CrossRefPubMedGoogle Scholar
  21. 21.
    Rossi F, Garavaglia S, Montalbano V et al (2007) Crystal structure of human kynurenine aminotransferase II, a drug target for the treatment of schizophrenia. J Biol Chem 283:3559–3566CrossRefPubMedGoogle Scholar
  22. 22.
    Amori L, Guidetti P, Pellicciari R et al (2009) On the relationship between the two branches of the kynurenine pathway in the rat brain in vivo. J Neurochem 109:316–325CrossRefPubMedGoogle Scholar
  23. 23.
    Guidetti P, Amori L, Sapko MT et al (2007) Mitochondrial aspartate aminotransferase: a third kynurenate-producing enzyme in the mammalian brain. J Neurochem 102:103–111CrossRefPubMedGoogle Scholar
  24. 24.
    Fukushima T, Sone Y, Mitsuhashi S et al (2009) Alteration of kynurenic acid concentration in rat plasma following optically pure kynurenine administration: a comparative study between enantiomers. Chirality 21:468–472CrossRefPubMedGoogle Scholar
  25. 25.
    Pilone MS (2000) d-Amino acid oxidase: new findings. Cell Mol Life Sci 57:1732–1747CrossRefPubMedGoogle Scholar
  26. 26.
    Corvin A, Donohoe G, McGhee K et al (2007) d-Amino acid oxidase (DAO) genotype and mood symptomatology in schizophrenia. Neurosci Lett 426:97–100CrossRefPubMedGoogle Scholar
  27. 27.
    Ono K, Shishido Y, Park HK et al (2009) Potential pathophysiological role of d-amino acid oxidase in schizophrenia: immunohistochemical and in situ hybridization study of the expression in human and rat brain. J Neural Transm 116:1335–1347CrossRefPubMedGoogle Scholar
  28. 28.
    Williams M (2009) Commentary: genome-based CNS drug discovery: d-amino acid oxidase (DAAO) as a novel target for antipsychotic medications: progress and challenges. Biochem Pharmacol 78:1360–1365CrossRefPubMedGoogle Scholar
  29. 29.
    Adage T, Trillat AC, Quattropani A et al (2008) In vitro and in vivo pharmacological profile of AS057278, a selective d-amino acid oxidase inhibitor with potential anti-psychotic properties. Eur Neuropsychopharmacol 18:200–214CrossRefPubMedGoogle Scholar
  30. 30.
    Fukushima T, Kawai J, Imai K et al (2004) Simultaneous determination of d- and l-serine in rat brain microdialysis sample using a column-switching HPLC with fluorimetric detection. Biomed Chromatogr 18:813–819CrossRefPubMedGoogle Scholar
  31. 31.
    Tomiya M, Fukushima T, Ogaya T et al (2009) Determination of kynurenic acid levels in rat brain microdialysis samples and changes in kynurenic acid levels induced by N-acetylaspartic acid. Biomed Chromatogr. doi:  10.1002/bmc.1336
  32. 32.
    Mitsuhashi S, Fukushima T, Kawai J et al (2006) Improved method for the determination of kynurenic acid in rat plasma by column-switching HPLC with post-column fluorescence detection. Anal Chim Acta 562:36–43CrossRefGoogle Scholar
  33. 33.
    Fukushima T, Mitsuhashi S, Tomiya M et al (2007) Determination of kynurenic acid in human serum and its correlation with the concentration of certain amino acids. Clin Chim Acta 377:174–178CrossRefPubMedGoogle Scholar
  34. 34.
    Fukushima T, Mitsuhashi S, Tomiya M et al (2007) Determination of rat brain kynurenic acid by column-switching HPLC with fluorescence detection. Biomed Chromatogr 21:514–519CrossRefPubMedGoogle Scholar
  35. 35.
    Miller JM, MacGarvey U, Beal MF (1992) The effect of peripheral loading with kynurenine and probenecid on extracellular striatal kynurenic acid concentrations. Neurosci Lett 146:115–118CrossRefPubMedGoogle Scholar
  36. 36.
    Wu HQ, Pereira EFR, Bruno JP et al (2009) The astrocyte-derived α7 nicotinic receptor antagonist kynurenic acid controls extracellular glutamate levels in the prefrontal cortex. J Mol Neurosci. doi:  10.1007/s12031-009-9235-2
  37. 37.
    Mitsuhashi S, Fukushima T, Arai K et al (2007) Development of a column-switching high-performance liquid chromatography for kynurenine enantiomers and its application to a pharmacokinetic study in rat plasma. Anal Chim Acta 587:60–66CrossRefPubMedGoogle Scholar
  38. 38.
    Tashiro M, Tsukada K, Kobayashi S et al (1961) A new pathway of d-tryptophan metabolism: enzymic formation of kynurenic acid via d-kynurenine. Biochem Biophys Res Commun 6:155–160CrossRefPubMedGoogle Scholar
  39. 39.
    Schell MJ, Molliver ME, Snyder SH (1995) d-Serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 92:3948–3952CrossRefPubMedGoogle Scholar
  40. 40.
    Verrall L, Walker M, Rawlings N et al (2007) d-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur J Neurosci 26:1657–1669CrossRefPubMedGoogle Scholar
  41. 41.
    Madeira C, Freitas ME, Vargas-Lopes C et al (2008) Increased brain d-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr Res 101:76–83CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Tadahiro Ogaya
    • 1
  • Ziyu Song
    • 1
  • Kana Ishii
    • 1
  • Takeshi Fukushima
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of Pharmaceutical SciencesToho UniversityFunabashi-shiJapan

Personalised recommendations