Neurochemical Research

, Volume 35, Issue 2, pp 298–305 | Cite as

Promotion of Lipid and Protein Oxidative Damage in Rat Brain by Ethylmalonic Acid

  • Patrícia Fernanda Schuck
  • Estela Natacha Brandt Busanello
  • Alana Pimentel Moura
  • Anelise Miotti Tonin
  • Mateus Grings
  • Luciana Ritter
  • Carmen Regla Vargas
  • Gustavo da Costa Ferreira
  • Moacir Wajner
Original Paper


High concentrations of ethylmalonic acid are found in tissues and biological fluids of patients affected by ethylmalonic encephalopathy, deficiency of short-chain acyl-CoA dehydrogenase activity and other illnesses characterized by developmental delay and neuromuscular symptoms. The pathophysiological mechanisms responsible for the brain damage in these patients are virtually unknown. Therefore, in the present work we investigated the in vitro effect of EMA on oxidative stress parameters in rat cerebral cortex. EMA significantly increased chemiluminescence and thiobarbituric acid-reactive species levels (lipoperoxidation), as well as carbonyl content and oxidation of sulfhydryl groups (protein oxidative damage) and DCFH. EMA also significantly decreased the levels of reduced glutathione (non-enzymatic antioxidant defenses). In contrast, nitrate and nitrite levels were not affected by this short organic acid. It is therefore presumed that oxidative stress may represent a pathomechanism involved in the pathophysiology of the neurologic symptoms manifested by patients affected by disorders in which EMA accumulates.


Reactive oxygen species Ethylmalonic acid SCAD deficiency Oxidative stress Rat brain 



This work was supported by grants from CNPq, PRONEX II, FAPERGS, PROPESQ/UFRGS, and FINEP research grant Rede Instituto Brasileiro de Neurociência (IBN-Net) # 01.06.0842-00, Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteção (INCT-EM).


  1. 1.
    Burlina A, Zacchello F, Dionisi-Vici C et al (1991) New clinical phenotype of branched-chain acyl-CoA oxidation defect. Lancet 338:1522–1523CrossRefPubMedGoogle Scholar
  2. 2.
    García-Silva MT, Ribes A, Campos Y, Garavaglia B, Arenas J et al (1997) Syndrome of encephalopathy, petechiae, and ethylmalonic aciduria. Pediatr Neurol 17:165–170CrossRefPubMedGoogle Scholar
  3. 3.
    Bhala A, Willi SM, Rinaldo P et al (1995) Clinical and biochemical characterization of short-chain acylcoenzyme A dehydrogenase deficiency. J Pediatr 126:910–915CrossRefPubMedGoogle Scholar
  4. 4.
    Gregersen N, Winter VS, Corydon MJ et al (1998) Identification of four new mutations in the short-chain acyl-CoA dehydrogenase gene in two patients: one of the variant alleles, 511C>T is present at an unexpectedly high frequency in the general population, as was the case for 625G>A, together conferring susceptibility to ethylmalonic aciduria. Hum Mol Gen 7:619–627CrossRefPubMedGoogle Scholar
  5. 5.
    Nagan N, Kruckeberg KE, Tauscher AL et al (2003) The frequency of short-chain acyl-CoA dehydrogenase gene variants in the US population and correlation with the C4-acylcarnitine concentration in newborn blood spots. Mol Genet Metab 78:239–246CrossRefPubMedGoogle Scholar
  6. 6.
    Amendt BA, Greene C, Sweetman L et al (1987) Short-chain acyl-coenzyme A dehydrogenase deficiency: clinical and biochemical studies in two patients. J Clin Invest 79:1303–1309CrossRefPubMedGoogle Scholar
  7. 7.
    van Maldegem BT, Duran M, Wanders RJ et al (2006) Clinical, biochemical, and genetic heterogeneity in short-chain acyl-coenzyme A dehydrogenase deficiency. JAMA 296:943–952CrossRefPubMedGoogle Scholar
  8. 8.
    Mikati MA, Chaaban HR, Karam PE et al (2007) Brain malformation and infantile spasms in a SCAD deficiency patient. Pediatr Neurol 36:48–50CrossRefPubMedGoogle Scholar
  9. 9.
    Jethva R, Bennett MJ, Vockley J (2008) Short-chain acyl-coenzyme A dehydrogenase deficiency. Mol Genet Metab 95:195–200CrossRefPubMedGoogle Scholar
  10. 10.
    Waisbren SE, Levy HL, Noble M et al (2008) Short-chain acyl-CoA dehydrogenase (SCAD) deficiency: an examination of the medical and neurodevelopmental characteristics of 14 cases identified through newborn screening or clinical symptoms. Mol Genet Metab 95:39–45CrossRefPubMedGoogle Scholar
  11. 11.
    Okuyaz C, Ezgü FS, Biberoglu G et al (2008) Severe infantile hypotonia with ethylmalonic aciduria: case report. J Child Neurol 23:703–705CrossRefPubMedGoogle Scholar
  12. 12.
    Pedersen CB, Kølvraa S, Kølvraa A et al (2008) The ACADS gene variation spectrum in 114 patients with short-chain acyl-CoA dehydrogenase (SCAD) deficiency is dominated by missense variations leading to protein misfolding at the cellular level. Hum Genet 124:43–56CrossRefPubMedGoogle Scholar
  13. 13.
    Tein I, Elpeleg O, Ben-Zeev B et al (2008) Short-chain acyl-CoA dehydrogenase gene mutation (c.319C>T) presents with clinical heterogeneity and is candidate founder mutation in individuals of Ashkenazi Jewish origin. Mol Genet Metab 93:179–189CrossRefPubMedGoogle Scholar
  14. 14.
    Duran M, Walther FJ, Bruinvis L et al (1983) The urinary excretion of ethylmalonic acid: what level requires further attention? Biochem Med 29:171–175CrossRefPubMedGoogle Scholar
  15. 15.
    Schuck PF, Leipnitz G, Ribeiro CA et al (2002) Inhibition of creatine kinase activity in vitro by ethylmalonic acid in cerebral cortex of young rats. Neurochem Res 27:1633–1639CrossRefPubMedGoogle Scholar
  16. 16.
    Schuck PF, Ferreira GC, Viegas CM, Tonin AM, Busanello EN, Pettenuzzo LF, Netto CA, Wajner M (2009) Chronic early postnatal administration of ethylmalonic acid to rats causes behavioral deficit. Behav Brain Res 197:364–370CrossRefPubMedGoogle Scholar
  17. 17.
    Leipnitz G, Schuck PF, Ribeiro CA et al (2003) Ethylmalonic acid inhibits mitochondrial creatine kinase activity from cerebral cortex of young rats in vitro. Neurochem Res 28:771–777CrossRefPubMedGoogle Scholar
  18. 18.
    Barschak AG, Ferreira GC, André KR et al (2006) Inhibition of the electron transport chain and creatine kinase activity by ethylmalonic acid in human skeletal muscle. Metab Brain Dis 21:11–19CrossRefPubMedGoogle Scholar
  19. 19.
    Evelson P, Travacio M, Repetto M et al (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266CrossRefPubMedGoogle Scholar
  20. 20.
    Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421CrossRefPubMedGoogle Scholar
  21. 21.
    Gonzalez-Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med 10:93–100CrossRefPubMedGoogle Scholar
  22. 22.
    Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363CrossRefPubMedGoogle Scholar
  23. 23.
    Aksenov MY, Markesbery WR (2001) Change in thiol content and expression of glutathione redox system gene in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145CrossRefPubMedGoogle Scholar
  24. 24.
    Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352PubMedGoogle Scholar
  25. 25.
    LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′, 7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231CrossRefPubMedGoogle Scholar
  26. 26.
    Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 1:62–71CrossRefGoogle Scholar
  27. 27.
    Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  28. 28.
    Burlina AB, Dionisi-Vici C, Bennett MJ et al (1994) A new syndrome with ethylmalonic aciduria and normal fatty acid oxidation in fibroblasts. J Pediatr 124:79–86CrossRefPubMedGoogle Scholar
  29. 29.
    García-Silva MT, Campos Y, Ribes A et al (1994) Encephalopathy, petechiae, and acrocyanosis with ethylmalonic aciduria associated with muscle cytochrome c oxidase deficiency. J Pediatr 125:843–844PubMedGoogle Scholar
  30. 30.
    Ozand PT, Rashed M, Millington DS et al (1994) Ethylmalonic aciduria: an organic acidemia with CNS involvement and vasculopathy. Brain Dev 16:12–22CrossRefPubMedGoogle Scholar
  31. 31.
    Rinaldo P, Raymond K, Al-Odaib A, Bennett MJ et al (1998) Clinical and biochemical features of fatty acid oxidation disorders. Curr Opin Pediatr 10:615–621CrossRefPubMedGoogle Scholar
  32. 32.
    Roe CR, Ding J (2001) Mitochondrial fatty acid oxidation disorders. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1909–1963Google Scholar
  33. 33.
    Merinero B, Pérez-Cerdá C, Ruiz Sala P et al (2006) Persistent increase of plasma butyryl/isobutyrylcarnitine concentrations as marker of SCAD defect and ethylmalonic encephalopathy. J Inherit Metab Dis 29:685CrossRefPubMedGoogle Scholar
  34. 34.
    Gregersen N, Andresen BS, Pedersen CB et al (2008) Mitochondrial fatty acid oxidation defects—remaining challenges. J Inherit Metab Dis 31:643–657CrossRefPubMedGoogle Scholar
  35. 35.
    Perez-Severiano F, Rios C, Segovia J (2000) Striatal oxidative damage parallels the expression of a neurological phenotype in mice transgenic for the mutation of Huntington’s disease. Brain Res 862:234–237CrossRefPubMedGoogle Scholar
  36. 36.
    Bogdanov MB, Andreassen OA, Dedeoglu A et al (2001) Increased oxidative damage to DNA in a transgenic mouse of Huntington’s disease. J Neurochem 79:1246–1249CrossRefPubMedGoogle Scholar
  37. 37.
    Behl C, Moosmann B (2002) Oxidative nerve cell death in Alzheimer’s disease and stroke: antioxidants as neuroprotective compounds. Biol Chem 383:521–536CrossRefPubMedGoogle Scholar
  38. 38.
    Stoy N, Mackay GM, Forrest CM et al (2005) Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. J Neurochem 93:611–623CrossRefPubMedGoogle Scholar
  39. 39.
    Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17:5–17CrossRefPubMedGoogle Scholar
  40. 40.
    Mancuso M, Coppede F, Migliore L et al (2006) Mitochondrial dysfunction, oxidative stress and neurodegeneration. J Alzheimers Dis 10:59–73PubMedGoogle Scholar
  41. 41.
    Streck EL, Zugno AI, Tagliari B et al (2001) Inhibition of rat brain Na+, K+-ATPase activity induced by homocysteine is probably mediated by oxidative stress. Neurochem Res 26:1195–1200CrossRefPubMedGoogle Scholar
  42. 42.
    Fontella FU, Gassen E, Pulrolnik V et al (2002) Stimulation of lipid peroxidation in vitro in rat brain by the metabolites accumulating in maple syrup urine disease. Metab Brain Dis 17:47–54CrossRefPubMedGoogle Scholar
  43. 43.
    Latini A, Scussiato K, Rosa RB et al (2003) Induction of oxidative stress by l-2-hydroxyglutaric acid in rat brain. J Neurosci Res 74:103–110CrossRefPubMedGoogle Scholar
  44. 44.
    Latini A, Scussiato K, Leipnitz G et al (2005) Promotion of oxidative stress by 3-hydroxyglutaric acid in rat striatum. J Inherit Metab Dis 28:57–67CrossRefPubMedGoogle Scholar
  45. 45.
    de Oliveira Marques F, Hagen ME, Pederzolli CD et al (2003) Glutaric acid induces oxidative stress in brain of young rats. Brain Res 964:153–158CrossRefPubMedGoogle Scholar
  46. 46.
    Wajner M, Latini A, Wyse AT et al (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 27:427–448CrossRefPubMedGoogle Scholar
  47. 47.
    Barschak AG, Sitta A, Deon M et al (2006) Evidence that oxidative stress is increased in plasma from patients with maple syrup urine disease. Metab Brain Dis 21:279–286CrossRefPubMedGoogle Scholar
  48. 48.
    Schuck PF, Ceolato PC, Ferreira GC et al (2007) Oxidative stress induction by cis-4-decenoic acid: relevance for MCAD deficiency. Free Radic Res 41:1261–1272CrossRefPubMedGoogle Scholar
  49. 49.
    Schuck PF, Ferreira GC, Moura AP et al (2009) Medium-chain fatty acids accumulating in MCAD deficiency elicit lipid and protein oxidative damage and decrease non-enzymatic antioxidant defenses in rat brain. Neurochem Int 54:519–525CrossRefPubMedGoogle Scholar
  50. 50.
    Sgaravatti AM, Sgarbi MB, Testa CG et al (2007) γ-Hydroxybutyric acid induces oxidative stress in cerebral cortex of young rats. Neurochem Int 50:564–570CrossRefPubMedGoogle Scholar
  51. 51.
    Halliwell B, Gutteridge JMC (1999) Detection of free radicals and others reactive species: trapping and fingerprinting. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press, Oxford, pp 351–425Google Scholar
  52. 52.
    Halliwell B, Gutteridge JMC (2007) Ageing, nutrition, disease and therapy: a role for antioxidants? In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press, Oxford, pp 614–677Google Scholar
  53. 53.
    Maharaj DS, Glass BD, Daya S (2007) Melatonin: new places in therapy. Biosci Rep 27:299–320CrossRefPubMedGoogle Scholar
  54. 54.
    Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–796CrossRefPubMedGoogle Scholar
  55. 55.
    Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623CrossRefPubMedGoogle Scholar
  56. 56.
    Zolkipli Z, Lehotay DC, Robinson BH et al (2008) Lipid peroxidative stress in SCAD deficiency (SCADD) and response to antioxidants. J Inherit Metab Dis 31(1):37Google Scholar
  57. 57.
    Reichmann H, Maltese WA, DeVivo DC (1988) Enzyme of fatty acid β-oxidation in developing brain. J Neurochem 51:339–344CrossRefPubMedGoogle Scholar
  58. 58.
    Kölker S, Sauer SW, Surtees RA et al (2006) The aetiology of neurological complications of organic acidaemias—a role for the blood–brain barrier. J Inherit Metab Dis 29:701–704CrossRefPubMedGoogle Scholar
  59. 59.
    Wood PA, Amendt BA, Rhead WJ et al (1989) Short-chain acyl-coenzyme A dehydrogenase deficiency in mice. Pediatr Res 25:38–43CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Patrícia Fernanda Schuck
    • 1
    • 3
  • Estela Natacha Brandt Busanello
    • 1
  • Alana Pimentel Moura
    • 1
  • Anelise Miotti Tonin
    • 1
  • Mateus Grings
    • 1
  • Luciana Ritter
    • 1
  • Carmen Regla Vargas
    • 2
  • Gustavo da Costa Ferreira
    • 1
  • Moacir Wajner
    • 1
    • 2
  1. 1.Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Serviço de Genética Médica do Hospital de Clínicas de Porto AlegrePorto AlegreBrazil
  3. 3.Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaBrazil

Personalised recommendations