Neurochemical Research

, Volume 35, Issue 2, pp 211–218 | Cite as

Telomerase Deficiency Affects Normal Brain Functions in Mice

  • Jaehoon Lee
  • Yong Sang Jo
  • Young Hoon Sung
  • In Koo Hwang
  • Hyuk Kim
  • Song-Yi Kim
  • Sun Shin Yi
  • June-Seek Choi
  • Woong Sun
  • Je Kyung Seong
  • Han-Woong Lee


Telomerase maintains telomere structures and chromosome stability, and it is essential for preserving the characteristics of stem and progenitor cells. In the brain, the hippocampus and the olfactory bulbs are continuously supplied with neural stem and progenitor cells that are required for adult neurogenesis throughout the life. Therefore, we examined whether telomerase plays important roles in maintaining normal brain functions in vivo. Telomerase reverse transcriptase (TERT) expression was observed in the hippocampus, the olfactory bulbs, and the cerebellum, but the telomerase RNA component (TERC) was not detected in hippocampus and olfactory bulbs. Interestingly, TERT-deficient mice exhibited significantly altered anxiety-like behaviors and abnormal olfaction measuring the functions of the hippocampus and the olfactory bulbs, respectively. However, the cerebellum-dependent behavior was not changed in these mutant mice. These results suggest that TERT is constitutively expressed in the hippocampus and the olfactory bulbs, and that it is important for regulating normal brain functions.


Telomerase deficiency Knockout mouse Behaviors Olfactory bulbs Hippocampus 



This work was supported by 21C Frontier Projects (Functional Human Genome Project, M106KB010014-07K0201-01410 and Brain Research Center, M103KV010025-07K2201-02510) from the MEST. Y.H.S. is supported by BK21 of Yonsei University from MEST.


  1. 1.
    Blackburn EH (2001) Switching and signaling at the telomere. Cell 106:661–673CrossRefPubMedGoogle Scholar
  2. 2.
    Blasco MA, Lee HW, Hande MP et al (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34CrossRefPubMedGoogle Scholar
  3. 3.
    Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460CrossRefPubMedGoogle Scholar
  4. 4.
    Kim NW, Piatyszek MA, Prowse KR (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015CrossRefPubMedGoogle Scholar
  5. 5.
    Lee HW, Blasco MA, Gottlieb GJ et al (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392:569–574CrossRefPubMedGoogle Scholar
  6. 6.
    Greenberg RA, Allsopp RC, Chin L et al (1998) Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. Oncogene 16:1723–1730CrossRefPubMedGoogle Scholar
  7. 7.
    Martín-Rivera L, Herrera E, Albar JP et al (1998) Expression of mouse telomerase catalytic subunit in embryos and adult tissues. Proc Natl Acad Sci USA 95:10471–10476CrossRefPubMedGoogle Scholar
  8. 8.
    Yamaguchi Y, Nozawa K, Savoysky E et al (1998) Change in telomerase activity of rat organs during growth and aging. Exp Cell Res 242:120–127CrossRefPubMedGoogle Scholar
  9. 9.
    Burger AM, Bibby MC, Double JA (1997) Telomerase activity in normal and malignant mammalian tissues: feasibility of telomerase as a target for cancer chemotherapy. Br J Cancer 75:516–522PubMedGoogle Scholar
  10. 10.
    Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8:481–488CrossRefPubMedGoogle Scholar
  11. 11.
    Elder GA, De Gasperi R, Gama Sosa MA (2006) Research update: neurogenesis in adult brain and neuropsychiatric disorders. Mt Sinai J Med 73:931–940PubMedGoogle Scholar
  12. 12.
    Allsopp RC, Morin GB, DePinho R et al (2003) Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102:517–520CrossRefPubMedGoogle Scholar
  13. 13.
    Choi J, Southworth LK, Sarin KY et al (2008) TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program. PLoS Genet 4(1):e10CrossRefPubMedGoogle Scholar
  14. 14.
    Flores I, Cayuela ML, Blasco MA (2005) Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309:1253–1256CrossRefPubMedGoogle Scholar
  15. 15.
    Liu L, DiGirolamo CM, Navarro PA et al (2004) Telomerase deficiency impairs differentiation of mesenchymal stem cells. Exp Cell Res 294(1):1–8CrossRefPubMedGoogle Scholar
  16. 16.
    Ostenfeld T, Caldwell MA, Prowse KR et al (2000) Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation. Exp Neurol 164:215–226CrossRefPubMedGoogle Scholar
  17. 17.
    Caporaso GL, Lim DA, Alvarez-Buylla A et al (2003) Telomerase activity in the subventricular zone of adult mice. Mol Cell Neurosci 23:693–702CrossRefPubMedGoogle Scholar
  18. 18.
    Kang HJ, Choi YS, Hong SB et al (2004) Ectopic expression of the catalytic subunit of telomerase protects against brain injury resulting from ischemia and NMDA-induced neurotoxicity. J Neurosci 24:1280–1287CrossRefPubMedGoogle Scholar
  19. 19.
    Klapper W, Shin T, Mattson MP (2001) Differential regulation of telomerase activity and TERT expression during brain development in mice. J Neurosci Res 64:252–260CrossRefPubMedGoogle Scholar
  20. 20.
    Fu W, Killen M, Culmsee C et al (2000) The catalytic subunit of telomerase is expressed in developing brain neurons and serves a cell survival-promoting function. J Mol Neurosci 14:3–15CrossRefPubMedGoogle Scholar
  21. 21.
    Zhu H, Fu W, Mattson MP (2000) The catalytic subunit of telomerase protects neurons against amyloid beta-peptide-induced apoptosis. J Neurochem 75(1):117–124CrossRefPubMedGoogle Scholar
  22. 22.
    Lee J, Sung YH, Cheong C et al (2008) TERT promotes cellular and organismal survival independently of telomerase activity. Oncogene 27:3754–3760CrossRefPubMedGoogle Scholar
  23. 23.
    Yuan X, Ishibashi S, Hatakeyama S et al (1999) Presence of telomeric G-strand tails in the telomerase catalytic subunit TERT knockout mice. Genes Cells 4(10):563–572CrossRefPubMedGoogle Scholar
  24. 24.
    Kim SY, Chung HS, Sun W et al (2007) Spatiotemporal expression patterns of non-clustered protocadherin family members in the developing rat brain. Neuroscience 147:996–1021CrossRefPubMedGoogle Scholar
  25. 25.
    Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl) 92(2):180–185CrossRefGoogle Scholar
  26. 26.
    Flanary BF, Streit WJ (2003) Telomeres shorten with age in rat cerebellum and cortex in vivo. J Anti Aging Med 6(4):299–309CrossRefPubMedGoogle Scholar
  27. 27.
    Wang D, Noda Y, Tsunekawa H et al (2007) Behavioural and neurochemical features of olfactory bulbectomized rats resembling depression with comorbid anxiety. Behav Brain Res 178:262–273CrossRefPubMedGoogle Scholar
  28. 28.
    Ren-Patterson RF, Cochran LW, Holmes A et al (2006) Gender-dependent modulation of brain monoamines and anxiety-like behaviors in mice with genetic serotonin transporter and BDNF deficiencies. Cell Mol Neurobiol 26(4–6):755–780PubMedGoogle Scholar
  29. 29.
    Võikar V, Kõks S, Vasar E et al (2001) Strain and gender differences in the behavior of mouse lines commonly used in transgenic studies. Physiol Behav 72(1–2):271–281CrossRefPubMedGoogle Scholar
  30. 30.
    Gheusi G, Cremer H, McLean H et al (2000) Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proc Natl Acad Sci USA 97:1823–1828CrossRefPubMedGoogle Scholar
  31. 31.
    Duan X, Kang E, Liu CY et al (2008) Development of neural stem cell in the adult brain. Curr Opin Neurobiol 18:108–115CrossRefPubMedGoogle Scholar
  32. 32.
    Ehninger D, Kempermann G (2008) Neurogenesis in the adult hippocampus. Cell Tissue Res 331:243–250CrossRefPubMedGoogle Scholar
  33. 33.
    Cai J, Wu Y, Mirua T et al (2002) Properties of a fetal multipotent neural stem cell (NEP cell). Dev Biol 251:221–240CrossRefPubMedGoogle Scholar
  34. 34.
    Kishi K, Peng JY, Kakuta S et al (1990) Migration of bipolar subependymal cells, precursors of the granule cells of the rat olfactory bulb, with reference to the arrangement of the radial glial fibers. Arch Histol Cytol 53:219–226CrossRefPubMedGoogle Scholar
  35. 35.
    Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148CrossRefPubMedGoogle Scholar
  36. 36.
    Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189CrossRefPubMedGoogle Scholar
  37. 37.
    Chung HK, Cheong C, Song J et al (2005) Extratelomeric functions of telomerase. Curr Mol Med 5:233–241CrossRefPubMedGoogle Scholar
  38. 38.
    Massard C, Zermati Y, Pauleau AL et al (2006) hTERT: a novel endogenous inhibitor of the mitochondrial cell death pathway. Oncogene 25:4505–4514CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang P, Chan SL, Fu W et al (2003) TERT suppresses apoptosis at a premitochondrial step by a mechanism requiring reverse transcriptase activity and 14-3-3 protein-binding ability. FASEB J 17:767–769PubMedGoogle Scholar
  40. 40.
    Deckwerth TL, Elliott JL, Knudson CM et al (1996) BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 17:401–411CrossRefPubMedGoogle Scholar
  41. 41.
    Sun W, Gould TW, Vinsant S et al (2003) Neuromuscular development after the prevention of naturally occurring neuronal death by Bax deletion. J Neurosci 23:7298–7310PubMedGoogle Scholar
  42. 42.
    Djebaili M, Rondouin G, Baille V et al (2000) p53 and Bax implication in NMDA induced-apoptosis in mouse hippocampus. Neuroreport 11:2973–2976PubMedCrossRefGoogle Scholar
  43. 43.
    Perez-Navarro E, Gavalda N, Gratacos E et al (2005) Brain-derived neurotrophic factor prevents changes in Bcl-2 family members and caspase-3 activation induced by excitotoxicity in the striatum. J Neurochem 92:678–691CrossRefPubMedGoogle Scholar
  44. 44.
    Kim WR, Kim Y, Eun B et al (2007) Impaired migration in the rostral migratory stream but spared olfactory function after the elimination of programmed cell death in Bax knock-out mice. J Neurosci 27(52):14392–14403CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jaehoon Lee
    • 1
    • 3
  • Yong Sang Jo
    • 2
  • Young Hoon Sung
    • 3
  • In Koo Hwang
    • 4
  • Hyuk Kim
    • 2
  • Song-Yi Kim
    • 2
  • Sun Shin Yi
    • 4
  • June-Seek Choi
    • 2
  • Woong Sun
    • 5
  • Je Kyung Seong
    • 4
    • 6
    • 7
  • Han-Woong Lee
    • 3
  1. 1.Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonKorea
  2. 2.Department of PsychologyKorea UniversitySeoulKorea
  3. 3.Department of Biochemistry, College of Life Science and Biotechnology, Yonsei Laboratory Animal Research CenterYonsei UniversitySeoulKorea
  4. 4.Department of Anatomy and Cell Biology, College of Veterinary Medicine and BK21 Program for Veterinary ScienceSeoul National UniversitySeoulKorea
  5. 5.Department of AnatomyKorea University College of MedicineSeoulKorea
  6. 6.Cancer Research InstituteSeoul National UniversitySeoulKorea
  7. 7.Interdisciplinary Program in BioinformaticsSeoul National UniversitySeoulKorea

Personalised recommendations