Neurochemical Research

, 35:60 | Cite as

Cannabinoids and Their Interactions with Diazepam on Modulation of Serum Corticosterone Concentration in Male Mice

  • Ali Saber-Tehrani
  • Nima Naderi
  • Azadeh Hosseini Najarkolaei
  • Abbas Haghparast
  • Fereshteh Motamedi
Original Paper


Experimental results indicate a mutual interaction between cannabinoidergic and GABAergic systems; however, the interaction between these systems on corticosterone release has not been fully investigated. In this study, we treated male mice with either cannabinoid compounds alone or in combination with diazepam. Blood samples were collected at 60 min post-injection. The serum corticosterone (CORT) level was measured using ELISA technique. Acute treatment of mice by cannabinoid receptor agonist WIN55212-2 (2.5 mg/kg; i.p.) resulted in a significant reduction of CORT, while treatment with either endocannabinoid reuptake inhibitor AM404 or endocannabinoid degradation enzyme inhibitor URB597 increased CORT compared to control group. Co-administration of AM404 or URB597 with cannabinoid CB1 receptor antagonist AM251 blocked the effect of these compounds on CORT. Treatment of mice with different doses of diazepam alone did not alter CORT compared to control group. However, co-administration of diazepam and either AM404 or WIN55212-2 significantly reduced CORT compared to the respective group treated with cannabinoid compound alone. Co-administration of ineffective dose of URB597 and ineffective dose of diazepam increased CORT level compared to groups treated with each compound alone. In conclusion, our findings suggest that the endogenous cannabinoid system is active as a modulator of CORT in mice and diazepam can alter the effect of cannabinoid system in the modulation of neuroendocrine functions.


Corticosterone Cannabinoid Diazepam ELISA 



This work was supported by a grant from Neuroscience Research Center, Shahid Beheshti University (MC).


  1. 1.
    Valverde O (2005) Participation of the cannabinoid system in the regulation of emotional-like behaviour. Curr Pharm Des 11(26):3421–3429CrossRefPubMedGoogle Scholar
  2. 2.
    Murphy LL, Munoz RM, Adrian BA, Villanua MA (1998) Function of cannabinoid receptors in the neuroendocrine regulation of hormone secretion. Neurobiol Dis 5(6Pt B):432–446CrossRefPubMedGoogle Scholar
  3. 3.
    Di S, Malcher-Lopes R, Halmos KC, Tasker JG (2003) Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci 23(12):4850–4857PubMedGoogle Scholar
  4. 4.
    Patel S, Roelke CT, Rademacher DJ, Cullinan WE, Hillard CJ (2004) Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology 145(12):5431–5438CrossRefPubMedGoogle Scholar
  5. 5.
    Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4(11):873–884CrossRefPubMedGoogle Scholar
  6. 6.
    Gonzalez S, Romero J, de Miguel R, Lastres-Becker I, Villanua MA, Makriyannis A, Ramos JA, Fernandez-Ruiz JJ (1999) Extrapyramidal and neuroendocrine effects of AM404, an inhibitor of the carrier-mediated transport of anandamide. Life Sci 65(3):327–336CrossRefPubMedGoogle Scholar
  7. 7.
    Fegley D, Gaetani S, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2005) Characterization of the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB597): effects on anandamide and oleoylethanolamide deactivation. J Pharmacol Exp Ther 313(1):352–358CrossRefPubMedGoogle Scholar
  8. 8.
    Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9(1):76–81CrossRefPubMedGoogle Scholar
  9. 9.
    Carrasco GA, Van de Kar LD (2003) Neuroendocrine pharmacology of stress. Eur J Pharmacol 463(1–3):235–272CrossRefPubMedGoogle Scholar
  10. 10.
    Kovacs KJ, Miklos IH, Bali B (2004) GABAergic mechanisms constraining the activity of the hypothalamo-pituitary-adrenocortical axis. Ann N Y Acad Sci 1018:466–476CrossRefPubMedGoogle Scholar
  11. 11.
    Bowers G, Cullinan WE, Herman JP (1998) Region-specific regulation of glutamic acid decarboxylase (GAD) mRNA expression in central stress circuits. J Neurosci 18(15):5938–5947PubMedGoogle Scholar
  12. 12.
    Decavel C, Van den Pol AN (1990) GABA: a dominant neurotransmitter in the hypothalamus. J Comp Neurol 302(4):1019–1037CrossRefPubMedGoogle Scholar
  13. 13.
    Cullinan WE (2000) GABA(A) receptor subunit expression within hypophysiotropic CRH neurons: a dual hybridization histochemical study. J Comp Neurol 419(3):344–351CrossRefPubMedGoogle Scholar
  14. 14.
    Akinci MK, Schofield PR (1999) Widespread expression of GABA(A) receptor subunits in peripheral tissues. Neurosci Res 35(2):145–153CrossRefPubMedGoogle Scholar
  15. 15.
    Calogero AE, Kamilaris TC, Bernardini R, Johnson EO, Chrousos GP, Gold PW (1990) Effects of peripheral benzodiazepine receptor ligands on hypothalamic-pituitary-adrenal axis function in the rat. J Pharmacol Exp Ther 253(2):729–737PubMedGoogle Scholar
  16. 16.
    Le Fur G, Guilloux F, Mitrani N, Mizoule J, Uzan A (1979) Relationships between plasma corticosteroids and benzodiazepines in stress. J Pharmacol Exp Ther 211(2):305–308PubMedGoogle Scholar
  17. 17.
    Vargas ML, Abella C, Hernandez J (2001) Diazepam increases the hypothalamic-pituitary-adrenocortical (HPA) axis activity by a cyclic AMP-dependent mechanism. Br J Pharmacol 133(8):1355–1361CrossRefPubMedGoogle Scholar
  18. 18.
    Owens MJ, Bissette G, Nemeroff CB (1989) Acute effects of alprazolam and adinazolam on the concentrations of corticotropin-releasing factor in the rat brain. Synapse 4(3):196–202CrossRefPubMedGoogle Scholar
  19. 19.
    Pivac N, Pericic D (1993) Inhibitory effect of diazepam on the activity of the hypothalamic-pituitary-adrenal axis in female rats. J Neural Transm Gen Sect 92(2–3):173–186CrossRefPubMedGoogle Scholar
  20. 20.
    Matheson GK, Gage D, White G, Dixon V, Gipson D (1988) A comparison of the effects of buspirone and diazepam on plasma corticosterone levels in rat. Neuropharmacology 27(8):823–830CrossRefPubMedGoogle Scholar
  21. 21.
    Manzanares J, Corchero J, Fuentes JA (1999) Opioid and cannabinoid receptor-mediated regulation of the increase in adrenocorticotropin hormone and corticosterone plasma concentrations induced by central administration of delta(9)-tetrahydrocannabinol in rats. Brain Res 839(1):173–179CrossRefPubMedGoogle Scholar
  22. 22.
    Wade MR, Degroot A, Nomikos GG (2006) Cannabinoid CB1 receptor antagonism modulates plasma corticosterone in rodents. Eur J Pharmacol 551(1–3):162–167CrossRefPubMedGoogle Scholar
  23. 23.
    Borcel E, Perez-Alvarez L, de Ceballos ML, Ramirez BG, Marco EM, Fernandez B, Rubio M, Guaza C, Viveros MP (2004) Functional responses to the cannabinoid agonist WIN 55, 212–2 in neonatal rats of both genders: influence of weaning. Pharmacol Biochem Behav 78(3):593–602CrossRefPubMedGoogle Scholar
  24. 24.
    Llorente R, Arranz L, Marco EM, Moreno E, Puerto M, Guaza C, De la Fuente M, Viveros MP (2007) Early maternal deprivation and neonatal single administration with a cannabinoid agonist induce long-term sex-dependent psychoimmunoendocrine effects in adolescent rats. Psychoneuroendocrinology 32(6):636–650CrossRefPubMedGoogle Scholar
  25. 25.
    Steger RW, Murphy LL, Bartke A, Smith MS (1990) Effects of psychoactive and nonpsychoactive cannabinoids on the hypothalamic-pituitary axis of the adult male rat. Pharmacol Biochem Behav 37(2):299–302CrossRefPubMedGoogle Scholar
  26. 26.
    Puder M, Weidenfeld J, Chowers I, Nir I, Conforti N, Siegel RA (1982) Corticotrophin and corticosterone secretion following delta 1-Tetrahydrocannabinol, in intact and in hypothalamic deafferentated male rats. Exp Brain Res 46(1):85–88CrossRefPubMedGoogle Scholar
  27. 27.
    Rodriguez de Fonseca F, Carrera MR, Navarro M, Koob GF, Weiss F (1997) Activation of corticotropin-releasing factor in the limbic system during cannabinoid withdrawal. Science 276(5321):2050–2054CrossRefPubMedGoogle Scholar
  28. 28.
    Weidenfeld J, Feldman S, Mechoulam R (1994) Effect of the brain constituent anandamide, a cannabinoid receptor agonist, on the hypothalamo-pituitary-adrenal axis in the rat. Neuroendocrinology 59(2):110–112CrossRefPubMedGoogle Scholar
  29. 29.
    Wenger T, Ledent C, Tramu G (2003) The endogenous cannabinoid, anandamide, activates the hypothalamo-pituitary-adrenal axis in CB1 cannabinoid receptor knockout mice. Neuroendocrinology 78(6):294–300CrossRefPubMedGoogle Scholar
  30. 30.
    Bartanusz V, Muller D, Gaillard RC, Streit P, Vutskits L, Kiss JZ (2004) Local gamma-aminobutyric acid and glutamate circuit control of hypophyseotrophic corticotropin-releasing factor neuron activity in the paraventricular nucleus of the hypothalamus. Eur J NeuroSci 19(3):777–782CrossRefPubMedGoogle Scholar
  31. 31.
    Mikkelsen JD, Soderman A, Kiss A, Mirza N (2005) Effects of benzodiazepines receptor agonists on the hypothalamic-pituitary-adrenocortical axis. Eur J Pharmacol 519(3):223–230CrossRefPubMedGoogle Scholar
  32. 32.
    Herman JP, Tasker JG, Ziegler DR, Cullinan WE (2002) Local circuit regulation of paraventricular nucleus stress integration: glutamate-GABA connections. Pharmacol Biochem Behav 71(3):457–468CrossRefPubMedGoogle Scholar
  33. 33.
    Tietz EI, Huang X, Chen S, Ferencak WF 3rd (1999) Temporal and regional regulation of alpha1, beta2 and beta3, but not alpha2, alpha4, alpha5, alpha6, beta1 or gamma2 GABA(A) receptor subunit messenger RNAs following one-week oral flurazepam administration. Neuroscience 91(1):327–341CrossRefPubMedGoogle Scholar
  34. 34.
    De Blas AL (1996) Brain GABAA receptors studied with subunit-specific antibodies. Mol Neurobiol 12(1):55–71CrossRefPubMedGoogle Scholar
  35. 35.
    Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338(6216):582–585CrossRefPubMedGoogle Scholar
  36. 36.
    Whiting PJ (2003) The GABAA receptor gene family: new opportunities for drug development. Curr Opin Drug Discov Devel 6(5):648–657PubMedGoogle Scholar
  37. 37.
    Wisden W, Laurie DJ, Monyer H, Seeburg PH (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci 12(3):1040–1062PubMedGoogle Scholar
  38. 38.
    Mishunina TM, Kononenko VY (2002) Specific GABA binding in the adrenals and blood corticosteroid levels in stress in intact rats and rats with changes in the functional activity of the hypothalamo-pituitary-adrenal system. Neurosci Behav Physiol 32(2):109–112CrossRefPubMedGoogle Scholar
  39. 39.
    Castelli MP, Ingianni A, Stefanini E, Gessa GL (1999) Distribution of GABA(B) receptor mRNAs in the rat brain and peripheral organs. Life Sci 64(15):1321–1328CrossRefPubMedGoogle Scholar
  40. 40.
    Metzeler K, Agoston A, Gratzl M (2004) An Intrinsic gamma-aminobutyric acid (GABA)ergic system in the adrenal cortex: findings from human and rat adrenal glands and the NCI-H295R cell line. Endocrinology 145(5):2402–2411CrossRefPubMedGoogle Scholar
  41. 41.
    Elias AN, Gwinup G, Valenta LJ (1981) Effects of valproic acid, naloxone and hydrocortisone in Nelson’s syndrome and cushing’s disease. Clin Endocrinol (Oxf) 15(2):151–154CrossRefGoogle Scholar
  42. 42.
    Ixart G, Cryssogelou H, Szafarczyk A, Malaval F, Assenmacher I (1983) Acute and delayed effects of picrotoxin on the adrenocorticotropic system of rats. Neurosci Lett 43(2–3):235–240CrossRefPubMedGoogle Scholar
  43. 43.
    Naderi N, Haghparast A, Saber-Tehrani A, Rezaii N, Alizadeh AM, Khani A, Motamedi F (2008) Interaction between cannabinoid compounds and diazepam on anxiety-like behaviour of mice. Pharmacol Biochem Behav 89(1):64–75CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ali Saber-Tehrani
    • 1
  • Nima Naderi
    • 1
  • Azadeh Hosseini Najarkolaei
    • 1
  • Abbas Haghparast
    • 1
  • Fereshteh Motamedi
    • 1
  1. 1.Neuroscience Research CenterShahid Beheshti University (MC)TehranIran

Personalised recommendations