Neurochemical Research

, 34:1278 | Cite as

Wnt/β-catenin/Tcf Signaling Pathway Activation in Malignant Progression of Rat Gliomas Induced by Transplacental N-Ethyl-N-Nitrosourea Exposure

  • Gangadhara Reddy Sareddy
  • Sundaram Challa
  • Manas Panigrahi
  • Phanithi Prakash Babu


Although Wnt/β-catenin/Tcf signaling pathway has been shown to be a crucial factor in the development of many cancers, little is known about its role in glioma malignancy. In the present study, we report the first evidence that Wnt/β-catenin/Tcf signaling pathway is constitutively activated in experimental gliomas induced by single transplacental dose of N-ethyl-N-nitrosourea (ENU). In the present study we analyzed ENU induced rat gliomas of different stages (P90, P135 and P180) for the expression of β-catenin, Lef1, Tcf4 and their targets c-Myc, N-Myc and cyclin D1. Western blot analysis revealed upregulation of β-catenin, Lef1, Tcf4, c-Myc, N-Myc and cyclin D1 in gliomas compared to controls and their levels were progressively increased from initial stage (P90) to progression stage (P180). In consistent with this, immunohistochemistry revealed the cytoplasmic and nuclear accumulation of β-catenin, and nuclear positivity was evident for Lef1, Tcf4, c-Myc, N-Myc and cyclin D1. Based on these results, we conclude that Wnt/β-catenin pathway may play a major role in the tumorigenesis and tumor progression in ENU induced rat gliomas.


Glioma β-catenin Tcf4 Lef1 c-Myc N-Myc cyclin D1 Tumor 



Financial assistance of CSIR, ICMR, DBT, New Delhi, India and CSIR for fellowship to GRS is gratefully acknowledged.


  1. 1.
    Kleihues P, Cavenee WK (2000) Pathology and genetics of tumors of the central nervous system (World Health Organization Classification of Tumors), 2nd edn. Lyon, IARCGoogle Scholar
  2. 2.
    Kleihues P, Ohgaki H (1999) Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol 1:44–51. doi: 10.1215/15228517-1-1-44 PubMedCrossRefGoogle Scholar
  3. 3.
    Holland EC (2001) Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2:120–129. doi: 10.1038/35052535 PubMedCrossRefGoogle Scholar
  4. 4.
    Simmons ML, Lamborn KR, Takahashi M et al (2001) Analysis of complex relationships between age, p53, epidermal growth factor receptor, and survival in glioblastoma patients. Cancer Res 61:1122–1128PubMedGoogle Scholar
  5. 5.
    Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198PubMedCrossRefGoogle Scholar
  6. 6.
    Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453. doi: 10.2353/ajpath.2007.070011 PubMedCrossRefGoogle Scholar
  7. 7.
    Cavenee WK (1992) Accumulation of genetic defects during astrocytoma progression. Cancer 70(6 Suppl):1788–1793. doi:10.1002/1097-0142(19920915)70:4+<1788::AID-CNCR2820701621>3.0.CO;2-LPubMedCrossRefGoogle Scholar
  8. 8.
    Louis DN (1997) A molecular genetic model of astrocytoma histopathology. Brain Pathol 7:755–764. doi: 10.1111/j.1750-3639.1997.tb01062.x PubMedCrossRefGoogle Scholar
  9. 9.
    Hayashi Y, Ueki K, Waha A et al (1997) Association of EGFR gene amplification and CDKN2 (p16/MTS1) gene deletion in glioblastoma multiforme. Brain Pathol 7:871–875. doi: 10.1111/j.1750-3639.1997.tb00890.x PubMedCrossRefGoogle Scholar
  10. 10.
    Moon RT, Brown JD, Torres M (1997) WNTs modulate cell fate and behavior during vertebrate development. Trends Genet 13:157–162. doi: 10.1016/S0168-9525(97)01093-7 PubMedCrossRefGoogle Scholar
  11. 11.
    Cadigan KM, Nusse R (1997) Wnt signaling: a common theme in animal development. Genes Dev 11:3286–3305. doi: 10.1101/gad.11.24.3286 PubMedCrossRefGoogle Scholar
  12. 12.
    Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810. doi: 10.1146/annurev.cellbio.20.010403.113126 PubMedCrossRefGoogle Scholar
  13. 13.
    Moon RT, Kohn AD, De Ferrari GV et al (2004) WNT and beta-catenin signaling: diseases and therapies. Nat Rev Genet 5:691–701. doi: 10.1038/nrg1427 PubMedCrossRefGoogle Scholar
  14. 14.
    Polakis P (1999) The oncogenic activation of beta-catenin. Curr Opin Genet Dev 9:15–21. doi: 10.1016/S0959-437X(99)80003-3 PubMedCrossRefGoogle Scholar
  15. 15.
    Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850. doi: 10.1038/nature03319 PubMedCrossRefGoogle Scholar
  16. 16.
    Pinson KI, Brennan J, Monkley S et al (2000) An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407:535–538. doi: 10.1038/35035124 PubMedCrossRefGoogle Scholar
  17. 17.
    Tamai K, Semenov M, Kato Y et al (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407:530–535. doi: 10.1038/35035117 PubMedCrossRefGoogle Scholar
  18. 18.
    Wehrli M, Dougan ST, Caldwell K et al (2000) Arrow encodes an LDL-receptor-related protein essential for wingless signalling. Nature 407:527–530. doi: 10.1038/35035110 PubMedCrossRefGoogle Scholar
  19. 19.
    Brown JD, Moon RT (1998) Wnt signaling: why is everything so negative? Curr Opin Cell Biol 10:182–187. doi: 10.1016/S0955-0674(98)80140-3 PubMedCrossRefGoogle Scholar
  20. 20.
    Wodarz A, Nusse R (1998) Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59–88. doi: 10.1146/annurev.cellbio.14.1.59 PubMedCrossRefGoogle Scholar
  21. 21.
    Cliffe A, Hamada F, Beinz M (2003) A role of dishevelled in relocating axin to the plasma membrane during wingless signaling. Curr Biol 13:960–966. doi: 10.1016/S0960-9822(03)00370-1 PubMedCrossRefGoogle Scholar
  22. 22.
    He TC, Sparks AB, Rago C et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512. doi: 10.1126/science.281.5382.1509 PubMedCrossRefGoogle Scholar
  23. 23.
    Shiina H, Igawa M, Breault J et al (2003) The human T-cell factor-4 gene splicing isoforms, Wnt signal pathway and apoptosis in renal cell carcinoma. Clin Cancer Res 9:2121–2132PubMedGoogle Scholar
  24. 24.
    Shtutman M, Zhurinsky J, Simcha I et al (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96:5522–5527. doi: 10.1073/pnas.96.10.5522 PubMedCrossRefGoogle Scholar
  25. 25.
    Druckrey H, Ivankovic S, Preussmann R (1966) Teratogenic and carcinogenic effects in the offspring after a single injection of ethylnitrosourea to pregnant rats. Nature 210:1378–1379. doi: 10.1038/2101378a0 PubMedCrossRefGoogle Scholar
  26. 26.
    Druckery H, Landschutz C, Ivankovic S (1970) Transplacental induction of malignant tumors of the central nervous system. II. ethylnitrosourea in 10 genetically defeined strains of rats. Z Krebsforsch 73:371–386. doi: 10.1007/BF00524174 CrossRefGoogle Scholar
  27. 27.
    Shibuya T, Morimoto K (1993) A review of the genotoxicity of N-ethyl-N-nitrosourea. Mutat Res 297:3–38PubMedGoogle Scholar
  28. 28.
    Lantos PL (1986) Development of nitrosourea-induced brain tumours with a special note on changes occurring during latency. Food Chem Toxicol 24:121–127. doi: 10.1016/0278-6915(86)90346-7 PubMedCrossRefGoogle Scholar
  29. 29.
    Swenberg JA, Koestner A, Wechsler W et al (1972) Quantitative aspects of transplacental tumor induction with ethylnitrosourea in rats. Cancer Res 32:2656–2660PubMedGoogle Scholar
  30. 30.
    Bilzer T, Reifenberger G, Wechsler W (1989) Chemical induction of brain tumors in rats by nitrosoureas: molecular biology and neuropathology. Neurotoxicol Teratol 11:551–556. doi: 10.1016/0892-0362(89)90036-6 PubMedCrossRefGoogle Scholar
  31. 31.
    Slikker W 3rd, Mei N, Chen T (2004) N-ethyl-N-nitrosourea (ENU) increased brain mutations in prenatal and neonatal mice but not in the adults. Toxicol Sci 81:112–120. doi: 10.1093/toxsci/kfh177 PubMedCrossRefGoogle Scholar
  32. 32.
    Bhaskara VK, Sundaram C, Babu PP (2006) pERK, pAkt and pBad: a possible role in cell proliferation and sustained cellular survival during tumorigenesis and tumor progression in ENU induced transplacental glioma rat model. Neurochem Res 31:1163–1170. doi: 10.1007/s11064-006-9142-7 PubMedCrossRefGoogle Scholar
  33. 33.
    Kelleher FC, Fennelly D, Rafferty M (2006) Common critical pathways in embryogenesis and cancer. Acta Oncol 45:375–388. doi: 10.1080/02841860600602946 PubMedCrossRefGoogle Scholar
  34. 34.
    Fogarty MP, Kessler JD, Wechsler-Reya RJ (2005) Morphing into cancer: the role of developmental signaling pathways in brain tumor formation. J Neurobiol 64:458–475. doi: 10.1002/neu.20166 PubMedCrossRefGoogle Scholar
  35. 35.
    Morin PJ (1999) Beta-catenin signaling and cancer. Bioessays 21:1021–1030. doi:10.1002/(SICI)1521-1878(199912)22:1<1021::AID-BIES6>3.0.CO;2-PPubMedCrossRefGoogle Scholar
  36. 36.
    Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851PubMedGoogle Scholar
  37. 37.
    Giles RH, van Es JH, Clevers H (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653:1–24PubMedGoogle Scholar
  38. 38.
    Yu JM, Jun ES, Jung JS et al (2007) Role of Wnt5a in the proliferation of human glioblastoma cells. Cancer Lett 257:172–181. doi: 10.1016/j.canlet.2007.07.011 PubMedCrossRefGoogle Scholar
  39. 39.
    Howng SL, Wu CH, Cheng TS et al (2002) Differential expression of Wnt genes, beta-catenin and E-cadherin in human brain tumors. Cancer Lett 183:95–101. doi: 10.1016/S0304-3835(02)00085-X PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang Z, Schittenhelm J, Guo K et al (2006) Upregulation of frizzled 9 in astrocytomas. Neuropathol Appl Neurobiol 32:615–624. doi: 10.1111/j.1365-2990.2006.00770.x PubMedCrossRefGoogle Scholar
  41. 41.
    Trosko JE (2001) Commnetary: in the concept of tumor formation, a useful paradigm? Mol Carcinog 30:131–137. doi: 10.1002/mc.1021 PubMedCrossRefGoogle Scholar
  42. 42.
    Jang T, Savarese T, Low HP et al (2006) Osteopontin expression in intratumoral astrocytes marks tumor progression in gliomas induced by prenatal exposure to N-ethyl-N-nitrosourea. Am J Pathol 168:1676–1685. doi: 10.2353/ajpath.2006.050400 PubMedCrossRefGoogle Scholar
  43. 43.
    Koestner A, Swenberg JA, Wechsler W (1971) Transplacental production with ethylnitrosourea of neoplasms of the nervous system in Sprague–Dawley rats. Am J Pathol 63:37–56PubMedGoogle Scholar
  44. 44.
    Schiffer D, Giordana MT, Mauro A et al (1980) Experimental brain tumors by transplacental ENU. Multifactorial study of the latency period. Acta Neuropathol 49:117–122. doi: 10.1007/BF00690751 PubMedCrossRefGoogle Scholar
  45. 45.
    Jang T, Litofsky NS, Smith TW et al (2004) Aberrant nestin expression during ethylnitrosourea-(ENU)-induced neuro carcinogenesis. Neurobiol Dis 15:544–552. doi: 10.1016/j.nbd.2003.11.016 PubMedCrossRefGoogle Scholar
  46. 46.
    Leonard JR, D’Sa C, Klocke BJ et al (2001) Neural precursor cell apoptosis and glial tumorigenesis following transplacental ethyl-nitrosourea exposure. Oncogene 20:8281–8286PubMedCrossRefGoogle Scholar
  47. 47.
    Ilyas M, Tomlinson IP (1997) The interactions of APC, E-cadherin and beta-catenin in tumour development and progression. J Pathol 182:128–137. doi:10.1002/(SICI)1096-9896(199706)182:2<128::AID-PATH839>3.0.CO;2-QPubMedCrossRefGoogle Scholar
  48. 48.
    Aberle H, Bauer A, Stappert J et al (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16:3797–3804. doi: 10.1093/emboj/16.13.3797 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Gangadhara Reddy Sareddy
    • 1
  • Sundaram Challa
    • 2
  • Manas Panigrahi
    • 2
  • Phanithi Prakash Babu
    • 1
  1. 1.Department of Biotechnology and Animal Sciences, School of Life SciencesUniversity of HyderabadHyderabadIndia
  2. 2.Department of Pathology and Neuro SurgeryNizam Institute of Medical SciencesHyderabadIndia

Personalised recommendations