Neurochemical Research

, Volume 34, Issue 7, pp 1236–1248 | Cite as

Insulin Action on Polyunsaturated Phosphatidic Acid Formation in Rat Brain: An “In Vitro” Model with Synaptic Endings from Cerebral Cortex and Hippocampus

  • Sandra E. Zulian
  • Mónica G. Ilincheta de Boschero
  • Norma M. Giusto


The highly efficient formation of phosphatidic acid from exogenous 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG) in rat brain synaptic nerve endings (synaptosomes) from cerebral cortex and hippocampus is reported. Phosphatidic acid synthesized from SAG or 1,2-dipalmitoyl-sn-glycerol (DPG) was 17.5 or 2.5 times higher, respectively, than from endogenous synaptosomal diacylglycerides. Insulin increased diacylglycerol kinase (DAGK) action on endogenous substrate in synaptic terminals from hippocampus and cerebral cortex by 199 and 97%, respectively. Insulin preferentially increased SAG phosphorylation from hippocampal membranes. In CC synaptosomes insulin increased phosphatidic acid (PA) synthesis from SAG by 100% with respect to controls. Genistein (a tyrosine kinase inhibitor) inhibited this stimulatory insulin effect. Okadaic acid or cyclosporine, used as Ser/Threo protein phosphatase inhibitors, failed to increase insulin effect on PA formation. GTPγS and particularly NaF were potent stimulators of PA formation from polyunsaturated diacylglycerol but failed to increase this phosphorylation when added after 5 min of insulin exposure. GTPγS and NaF increased phosphatidylinositol 4,5 bisphosphate (PIP2) labeling with respect to controls when SAG was present. On the contrary, they decreased polyphosphoinositide labeling with respect to controls in the presence of DPG. Our results indicate that a DAGK type 3 (DAGKε) which preferentially, but not selectively, utilizes 1-acyl-2-arachidonoyl-sn-glycerol and which could be associated with polyphosphoinositide resynthesis, participates in synaptic insulin signaling. GTPγS and NaF appear to be G protein activators related to insulin and the insulin receptor, both affecting the signaling mechanism that augments phosphatidic acid formation.


Phosphatidic acid Diacylglycerol Insulin Synaptosomes 



Cerebral cortex


Cyclosporine A


Central nervous system




Diacylglycerol kinase








Guanosine 5′-o-(3-thiotriphosphate)




Okadaic acid




Phosphatidic acid


Phosphatidic acid phosphohydrolase type 2




Phosphatidylinositol bisphosphate


Phosphatidylinositol monophosphate


Phosphatidylinositol bisphosphate phospholipase C


Phospholipase D



T ×100

Polyoxyethylene octyl phenyl ether, 4-octylphenol polyethoxylate







This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), the Agencia Nacional de Promoción Científica y Tecnológica (FONCyT) and the Secretaría General de Ciencia y Tecnología, Universidad Nacional del Sur, Argentina. The authors thanks Mr. Guillermo Pérez for his technical assistance in this study.


  1. 1.
    Abbott MA, Wells DG, Fallon JR (1999) The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J Neurosci 19:7300–7308PubMedGoogle Scholar
  2. 2.
    Wan Q, Xiong ZG, Man HY et al (1997) Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin. Nature 388:686–690. doi: 10.1038/41792 PubMedCrossRefGoogle Scholar
  3. 3.
    Zhao W, Chen H, Xu H et al (1999) Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 274:34893–34902. doi: 10.1074/jbc.274.49.34893 PubMedCrossRefGoogle Scholar
  4. 4.
    Salvador GA, Ilincheta de Boschero MG, Pasquare SJ et al (2005) Phosphatidic acid and diacylglycerol generation is regulated by insulin in cerebral cortex synaptosomes from adult and aged rats. J Neurosci Res 81:244–252. doi: 10.1002/jnr.20565 PubMedCrossRefGoogle Scholar
  5. 5.
    Zulian SE, Ilincheta de Boschero MG, Giusto NM (2006) Insulin promotes diacylglycerol kinase activation by different mechanisms in rat cerebral cortex synaptosomes. J Neurosci Res 84:1012–1019. doi: 10.1002/jnr.21010 PubMedCrossRefGoogle Scholar
  6. 6.
    Rodriguez de Turco EB, Tang W, Topham MK et al (2001) Diacylglycerol kinase epsilon regulates seizure susceptibility and long-term potentiation through arachidonoyl- inositol lipid signaling. Proc Natl Acad Sci USA 98:4740–4745. doi: 10.1073/pnas.081536298 PubMedCrossRefGoogle Scholar
  7. 7.
    Walsh JP, Suen R, Lemaitre RN et al (1994) Arachidonoyl-diacylglycerol kinase from bovine testis. Purification and properties. J Biol Chem 269:21155–21164PubMedGoogle Scholar
  8. 8.
    MacDonald ML, Mack KF, Richardson CN et al (1988) Regulation of diacylglycerol kinase reaction in Swiss 3T3 cells. Increased phosphorylation of endogenous diacylglycerol and decreased phosphorylation of didecanoylglycerol in response to platelet-derived growth factor. J Biol Chem 263:1575–1583PubMedGoogle Scholar
  9. 9.
    Luo B, Regier DS, Prescott SM et al (2004) Diacylglycerol kinases. Cell Signal 16:983–989PubMedGoogle Scholar
  10. 10.
    Walsh JP, Suen R, Glomset JA (1995) Arachidonoyl-diacylglycerol kinase. Specific in vitro inhibition by polyphosphoinositides suggests a mechanism for regulation of phosphatidylinositol biosynthesis. J Biol Chem 270:28647–28653. doi: 10.1074/jbc.270.42.24658 PubMedCrossRefGoogle Scholar
  11. 11.
    Jiang Y, Sakane F, Kanoh H et al (2000) Selectivity of the diacylglycerol kinase inhibitor 3-[2-(4-[bis-(4-fluorophenyl)methylene]-1-piperidinyl)ethyl]-2, 3-dihydro-2-thioxo-4(1H)quinazolinone (R59949) among diacylglycerol kinase subtypes. Biochem Pharmacol 59:763–772. doi: 10.1016/S0006-2952(99)00395-0 PubMedCrossRefGoogle Scholar
  12. 12.
    Salvador GA, Pasquare SJ, Ilincheta de Boschero MG et al (2002) Differential modulation of phospholipase D and phosphatidate phosphohydrolase during aging in rat cerebral cortex synaptosomes. Exp Gerontol 37:543–552. doi: 10.1016/S0531-5565(01)00214-5 PubMedCrossRefGoogle Scholar
  13. 13.
    Ilincheta de Boschero MG, Giusto NM (1992) Phosphatidic acid and polyphosphoinositide metabolism in rod outer segments. Differential role of soluble and peripheral proteins. Biochim Biophys Acta 1127:105–115PubMedGoogle Scholar
  14. 14.
    Thirugnanam S, Topham MK, Epand RM (2001) Physiological implications of the contrasting modulation of the activities of the epsilon- and zeta-isoforms of diacylglycerol kinase. Biochemistry 40:10607–10613. doi: 10.1021/bi010609s PubMedCrossRefGoogle Scholar
  15. 15.
    Nobe K, Miyatake M, Nobe H et al (2004) Novel diacylglycerol kinase inhibitor selectively suppressed an U46619-induced enhancement of mouse portal vein contraction under high glucose conditions. Br J Pharmacol 143:166–178. doi: 10.1038/sj.bjp.0705910 PubMedCrossRefGoogle Scholar
  16. 16.
    Vinals F, Testar X, Palacin M et al (1993) Inhibitory effect of fluoride on insulin receptor autophosphorylation and tyrosine kinase activity. Biochem J 291(Pt 2):615–622PubMedGoogle Scholar
  17. 17.
    Vinals F, Camps M, Testar X et al (1997) Effect of cations on the tyrosine kinase activity of the insulin receptor: inhibition by fluoride is magnesium dependent. Mol Cell Biochem 171:69–73. doi: 10.1023/A:1006836001489 PubMedCrossRefGoogle Scholar
  18. 18.
    Shenolikar S, Nairn AC (1991) Protein phosphatases: recent progress. Adv Second Messenger Phosphoprotein Res 23:1–121PubMedGoogle Scholar
  19. 19.
    Farese RV, Sajan MP, Standaert ML (2005) Insulin-sensitive protein kinases (atypical protein kinase C and protein kinase B/Akt): actions and defects in obesity and type II diabetes. Exp Biol Med (Maywood) 230:593–605Google Scholar
  20. 20.
    Litosch I (1987) Guanine nucleotide and NaF stimulation of phospholipase C activity in rat cerebral-cortical membranes. Studies on substrate specificity. Biochem J 244:35–40PubMedGoogle Scholar
  21. 21.
    Zeng YY, Benishin CG, Pang PK (1989) Guanine nucleotide binding proteins may modulate gating of calcium channels in vascular smooth muscle. II. Studies with guanosine 5′-(gamma)triphosphate 3. J Pharmacol Exp Ther 250:352–357PubMedGoogle Scholar
  22. 22.
    Adamo M, Raizada MK, LeRoith D (1989) Insulin and insulin-like growth factor receptors in the nervous system. Mol Neurobiol 3:71–100. doi: 10.1007/BF02935589 PubMedCrossRefGoogle Scholar
  23. 23.
    Unger JW, Moss AM, Livingston JN (1991) Immunohistochemical localization of insulin receptors and phosphotyrosine in the brainstem of the adult rat. Neuroscience 42:853–861. doi: 10.1016/0306-4522(91)90049-T PubMedCrossRefGoogle Scholar
  24. 24.
    Unger JW, Livingston JN, Moss AM (1991) Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog Neurobiol 36:343–362. doi: 10.1016/0301-0082(91)90015-S PubMedCrossRefGoogle Scholar
  25. 25.
    Goto K, Hozumi Y, Nakano T et al (2008) Lipid messenger, diacylglycerol, and its regulator, diacylglycerol kinase, in cells, organs, and animals: history and perspective. Tohoku J Exp Med 214:199–212. doi: 10.1620/tjem.214.199 PubMedCrossRefGoogle Scholar
  26. 26.
    Folli F, Bonfanti L, Renard E et al (1994) Insulin receptor substrate-1 (IRS-1) distribution in the rat central nervous system. J Neurosci 14:6412–6422PubMedGoogle Scholar
  27. 27.
    Imai S, Kai M, Yasuda S et al (2005) Identification and characterization of a novel human type II diacylglycerol kinase, DGK kappa. J Biol Chem 280:39870–39881. doi: 10.1074/jbc.M500669200 PubMedCrossRefGoogle Scholar
  28. 28.
    Chabre M (1990) Aluminofluoride and beryllofluoride complexes: a new phosphate analogs in enzymology. Trends Biochem Sci 15:6–10. doi: 10.1016/0968-0004(90)90117-T PubMedCrossRefGoogle Scholar
  29. 29.
    Sarri E, Claro E (1999) Fluoride-induced depletion of polyphosphoinositides in rat brain cortical slices: a rationale for the inhibitory effects on phospholipase C. Int J Dev Neurosci 17:357–367. doi: 10.1016/S0736-5748(99)00034-9 PubMedCrossRefGoogle Scholar
  30. 30.
    Claro E, Wallace MA, Fain JN (1990) Dual effect of fluoride on phosphoinositide metabolism in rat brain cortex. Stimulation of phospholipase C and inhibition of polyphosphoinositide synthesis. Biochem J 268:733–737PubMedGoogle Scholar
  31. 31.
    Lee CH, Park D, Wu D et al (1992) Members of the Gq alpha subunit gene family activate phospholipase C beta isozymes. J Biol Chem 267:16044–16047PubMedGoogle Scholar
  32. 32.
    Meisenhelder J, Suh PG, Rhee SG et al (1989) Phospholipase C-gamma is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell 57:1109–1122. doi: 10.1016/0092-8674(89)90048-2 PubMedCrossRefGoogle Scholar
  33. 33.
    Kreuzer J, Nurnberg B, Krieger-Brauer HI (2004) Ligand-dependent autophosphorylation of the insulin receptor is positively regulated by Gi-proteins. Biochem J 380:831–836. doi: 10.1042/BJ20031659 PubMedCrossRefGoogle Scholar
  34. 34.
    Umemori H, Hayashi T, Inoue T et al (1999) Involvement of protein tyrosine phosphatases in activation of the trimeric G protein Gq/11. Oncogene 18:7399–7402. doi: 10.1038/sj.onc.1203152 PubMedCrossRefGoogle Scholar
  35. 35.
    Umemori H, Inoue T, Kume S et al (1997) Activation of the G protein Gq/11 through tyrosine phosphorylation of the alpha subunit. Science 276:1878–1881. doi: 10.1126/science.276.5320.1878 PubMedCrossRefGoogle Scholar
  36. 36.
    Luo B, Prescott SM, Topham MK (2004) Diacylglycerol kinase zeta regulates phosphatidylinositol 4-phosphate 5-kinase Ialpha by a novel mechanism. Cell Signal 16:891–897. doi: 10.1016/j.cellsig.2004.01.010 PubMedCrossRefGoogle Scholar
  37. 37.
    Tabellini G, Bortul R, Santi S et al (2003) Diacylglycerol kinase-theta is localized in the speckle domains of the nucleus. Exp Cell Res 287:143–154. doi: 10.1016/S0014-4827(03)00115-0 PubMedCrossRefGoogle Scholar
  38. 38.
    Topham MK (2006) Signaling roles of diacylglycerol kinases. J Cell Biochem 97:474–484. doi: 10.1002/jcb.20704 PubMedCrossRefGoogle Scholar
  39. 39.
    Saito S, Goto K, Tonosaki A et al (1997) Gene cloning and characterization of CDP-diacylglycerol synthase from rat brain. J Biol Chem 272:9503–9509. doi: 10.1074/jbc.272.14.9503 PubMedCrossRefGoogle Scholar
  40. 40.
    Stockhorst U, de Fries D, Steingrueber HJ et al (2004) Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans. Physiol Behav 83:47–54PubMedGoogle Scholar
  41. 41.
    Wickelgren I (1998) Tracking insulin to the mind. Science 280:517–519. doi: 10.1126/science.280.5363.517 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sandra E. Zulian
    • 1
  • Mónica G. Ilincheta de Boschero
    • 1
  • Norma M. Giusto
    • 1
  1. 1.Instituto de Investigaciones Bioquímicas de Bahía BlancaUniversidad Nacional del Sur and CONICETBahía BlancaArgentina

Personalised recommendations