Advertisement

Neurochemical Research

, Volume 34, Issue 4, pp 786–794 | Cite as

Neuronal Mitochondrial Toxicity of Malondialdehyde: Inhibitory Effects on Respiratory Function and Enzyme Activities in Rat Brain Mitochondria

  • Jiangang Long
  • Changsheng Liu
  • Lijuan Sun
  • Hongxiang Gao
  • Jiankang Liu
Original Paper

Abstract

Malondialdehyde (MDA) is a product of oxidative damage to lipids, amino acids and DNA, and accumulates with aging and diseases. MDA can possibly react with amines so as to modify proteins and inactivate enzymes; it can also modify nucleosides so as to cause mutagenicity. Brain mitochondrial dysfunction is a major contributor to aging and neurodegenerative diseases. We hypothesize that MDA accumulated during aging targets mitochondrial enzymes so as to cause further mitochondrial dysfunction and additional contributions to aging and neurodegeneration. Herein, we investigated the neuronal mitochondrial toxic effects of MDA on mitochondrial respiration and activities of enzymes (mitochondrial complexes I–V, α-ketoglutarate dehydrogenase (KGDH) and pyruvate dehydrogenase (PDH)), in isolated rat brain mitochondria. MDA depressed mitochondrial membrane potential, and also showed a dose-dependent inhibition of mitochondrial complex I- and complex II-linked respiration. Complex I and II, and PDH activities were depressed by MDA at ≥0.2 μmol/mg; KGDH and complex V were inhibited by ≥0.4 and ≥1.6 μmol MDA/mg, respectively. However, MDA did not have any toxic effects on complex III and IV activities over the range 0–2 μmol/mg. MDA significantly elevated mitochondrial reactive oxygen species (ROS) and protein carbonyls at 0.2 and 0.002 μmol/mg, respectively. As for the antioxidant defense system, a high dose of MDA slightly decreased mitochondrial GSH and superoxide dismutase. These results demonstrate that MDA causes neuronal mitochondrial dysfunction by directly promoting generation of ROS and modifying mitochondrial proteins. The results suggest that MDA-induced neuronal mitochondrial toxicity may be an important contributing factor to brain aging and neurodegenerative diseases.

Keywords

Mitochondrial respiration Mitochondrial electron transport system complexes Reactive oxygen species (ROS) α-Ketoglutarate dehydrogenase (KGDH) Pyruvate dehydrogenase (PDH) Mitochondrial membrane potential (MMP) 

Notes

Acknowledgments

The authors thank Dr. Edward Sharman for his critical reading and careful editing of this manuscript. This study was supported by an Outstanding Oversea Scholars Award from the Chinese Academy of Sciences, Shanghai Pujiang Talent Award, and a Hi-Sun Science and Technology Prize from Zhejiang Hi-Sun Pharmaceuticals, Inc.

References

  1. 1.
    Harman D (1961) Prolongation of the normal lifespan and inhibition of spontaneous cancer by antioxidants. J Gerontol 16:247–254PubMedGoogle Scholar
  2. 2.
    Floyd RA, West M, Hensley K (2001) Oxidative biochemical markers; clues to understanding aging in long- lived species. Exp Gerontol 36:619–640. doi: 10.1016/S0531-5565(00)00231-X PubMedCrossRefGoogle Scholar
  3. 3.
    Liu J, Mori A (1999) Stress, aging, and brain oxidative damage. Neurochem Res 24:1479–1497. doi: 10.1023/A:1022597010078 PubMedCrossRefGoogle Scholar
  4. 4.
    Levine RL, Garland D, Oliver CN et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478. doi: 10.1016/0076-6879(90)86141-H PubMedCrossRefGoogle Scholar
  5. 5.
    Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128. doi: 10.1016/0891-5849(91)90192-6 PubMedCrossRefGoogle Scholar
  6. 6.
    Gutteridge JMC (1981) Thiobarbituric acid-reactivity following iron-dependent free-radicals damage to amino acids and carbohydrates. FEBS Lett 128:343–346. doi: 10.1016/0014-5793(81)80113-5 PubMedCrossRefGoogle Scholar
  7. 7.
    Burger RM, Berkowitz AR, Peisach J, Horwitz SB (1980) Origin of malondialdehyde from DNA degraded by Fe(II) x bleomycin. J Biol Chem 255:11832–11838PubMedGoogle Scholar
  8. 8.
    Cheeseman KH, Emery S, Maddix SP, Slater TF, Burton GW, Ingold KU (1988) Studies on lipid peroxidation in normal and tumour tissues. The Yoshida rat liver tumour. Biochem J 250:247–252PubMedGoogle Scholar
  9. 9.
    Liu J, Ames BN (2005) Reducing mitochondrial decay with mitochondrial nutrients to delay and treat cognitive dysfunction, Alzheimer’s disease, and Parkinson’s disease. Nutr Neurosci 8:67–89. doi: 10.1080/10284150500047161 PubMedCrossRefGoogle Scholar
  10. 10.
    Liu J, Atamna H, Hirohiko K, Ames BN (2002) Delaying brain mitochondrial decay and aging with mitochondrial antioxidants and metabolites. Ann N Y Acad Sci 959:133–166PubMedCrossRefGoogle Scholar
  11. 11.
    Picklo MJ, Amarnath V, McIntyre JO, Graham DG, Montine TJ (1999) 4-Hydroxy-2(E)-nonenal inhibits CNS mitochondrial respiration at multiple sites. J Neurochem 72:1617–1624. doi: 10.1046/j.1471-4159.1999.721617.x PubMedCrossRefGoogle Scholar
  12. 12.
    Humphries KM, Szweda LI (1998) Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 37:15835–15841. doi: 10.1021/bi981512h PubMedCrossRefGoogle Scholar
  13. 13.
    Neely MD, Zimmerman L, Picklo MJ et al (2000) Congeners of N(alpha)-acetyl-l-cysteine but not aminoguanidine act as neuroprotectants from the lipid peroxidation product 4-hydroxy-2-nonenal. Free Radic Biol Med 29:1028–1036. doi: 10.1016/S0891-5849(00)00411-1 PubMedCrossRefGoogle Scholar
  14. 14.
    Long J, Wang X, Gao H et al (2006) Malonaldehyde acts as a mitochondrial toxin: inhibitory effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Life Sci 79:1466–1472. doi: 10.1016/j.lfs.2006.04.024 PubMedCrossRefGoogle Scholar
  15. 15.
    Greilberger J, Koidl C, Greilberger M et al (2008) Malondialdehyde, carbonyl proteins and albumin-disulphide as useful oxidative markers in mild cognitive impairment and Alzheimer’s disease. Free Radic Res 42:633–638. doi: 10.1080/10715760802255764 PubMedCrossRefGoogle Scholar
  16. 16.
    Bourdel-Marchasson I, Delmas-Beauvieux MC, Peuchant E et al (2001) Antioxidant defences and oxidative stress markers in erythrocytes and plasma from normally nourished elderly Alzheimer patients. Age Ageing 30:235–241. doi: 10.1093/ageing/30.3.235 PubMedCrossRefGoogle Scholar
  17. 17.
    Nagai T, Yamada K, Kim HC et al (2003) Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. FASEB J 17:50–52PubMedGoogle Scholar
  18. 18.
    Zhou XM, Cao YL, Dou DQ (2006) Protective effect of ginsenoside-Re against cerebral ischemia/reperfusion damage in rats. Biol Pharm Bull 29:2502–2505. doi: 10.1248/bpb.29.2502 PubMedCrossRefGoogle Scholar
  19. 19.
    Wang QL, Lin M, Liu GT (2001) Antioxidative activity of natural isorhapontigenin. Jpn J Pharmacol 87:61–66. doi: 10.1254/jjp.87.61 PubMedCrossRefGoogle Scholar
  20. 20.
    Long J, Gao F, Tong L, Cotman CW, Ames BN, Liu J (2008) Mitochondrial decay in the brains of old rats: ameliorating effect of alpha-lipoic acid and acetyl-l-carnitine. Neurochem Res. doi: 10.1007/s11064-008-9850-2
  21. 21.
    Navarro A, Boveris A (2004) Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol 287:R1244–R1249. doi: 10.1152/ajpregu.00226.2004 PubMedGoogle Scholar
  22. 22.
    Stephan K, Chang M, Brass EP, Hoppel CL (1991) Decreased activities of ubiquinol: ferricytochrome c oxidoreductase(complex and ferrocytochrome c:oxygen oxidoreductase (in liver mitochondria from rats with hydroxycobalamin-induced methylmalonic aciduria. J Biol Chem 266:20998–21003Google Scholar
  23. 23.
    Liu J, Yeo HC, Doniger SJ, Ames BN (1997) Assay of aldehydes from lipid peroxidation: gas chromatography-mass spectrometry compared to thiobarbituric acid. Anal Biochem 245:161–166. doi: 10.1006/abio.1996.9990 PubMedCrossRefGoogle Scholar
  24. 24.
    Moreira PI, Santos MS, Moreno AM, Seica R, Oliveira CR (2003) Increased vulnerability of brain mitochondria in diabetic (Goto-Kakizaki) rats with aging and amyloid-beta exposure. Diabetes 52:1449–1456. doi: 10.2337/diabetes.52.6.1449 PubMedCrossRefGoogle Scholar
  25. 25.
    Cossarizza A, Ceccarelli D, Masini A (1996) Functional heterogeneity of an isolated mitochondrial population revealed by cytofluorometric analysis at the single organelle level. Exp Cell Res 222:84–94. doi: 10.1006/excr.1996.0011 PubMedCrossRefGoogle Scholar
  26. 26.
    Zamzami N, Metivier D, Kroemer G (2000) Quantitation of mitochondrial transmembrane potential in cells and in isolated mitochondria. Methods Enzymol 322:208–213. doi: 10.1016/S0076-6879(00)22021-1 PubMedCrossRefGoogle Scholar
  27. 27.
    Hagen TM, Liu J, Lykkesfeldt J et al (2002) Feeding acetyl-l-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress. Proc Natl Acad Sci USA 99:1870–1875. doi: 10.1073/pnas.261708898 PubMedCrossRefGoogle Scholar
  28. 28.
    Yang S, Tan TMC, Wee A, Leow CK (2004) Mitochondrial respiratory function and antioxidant capacity in normal and cirrhotic livers following partial hepatectomy. CMLS, Cell Mol Life Sci 61:220–229. doi: 10.1007/s00018-003-3357-4 CrossRefGoogle Scholar
  29. 29.
    Janssen AJ, Trijbels FJ, Sengers RC et al (2007) Spectrophotometric assay for complex I of the respiratory chain in tissue samples and cultured fibroblasts. Clin Chem 53:729–734. doi: 10.1373/clinchem.2006.078873 PubMedCrossRefGoogle Scholar
  30. 30.
    Zheng J, Ramirez VD (2000) Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Br J Pharmacol 130:1115–1123. doi: 10.1038/sj.bjp.0703397 PubMedCrossRefGoogle Scholar
  31. 31.
    Hinman LM, Blass JP (1981) An NADH-linked spectrophotometric assay for pyruvate dehydrogenase complex in crude tissue homogenates. J Biol Chem 256:6583–6586PubMedGoogle Scholar
  32. 32.
    Keller JN, Mark RJ, Bruce AJ et al (1997) 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 80:685–696. doi: 10.1016/S0306-4522(97)00065-1 PubMedCrossRefGoogle Scholar
  33. 33.
    Gould E, McEwen BS (1993) Neuronal birth and death. Curr Opin Neurobiol 3:676–682. doi: 10.1016/0959-4388(93)90138-O PubMedCrossRefGoogle Scholar
  34. 34.
    Long J, Wang X, Gao H et al (2007) d-Galactose toxicity in mice is associated with mitochondrial dysfunction: protecting effects of mitochondrial nutrient r-alpha-lipoic acid. Biogerontology 8:373–381. doi: 10.1007/s10522-007-9081-y PubMedCrossRefGoogle Scholar
  35. 35.
    Beppu M, Fukata Y, Kikugawa K (1988) Interaction of malondialdehyde-modified bovine serum-albumin and mouse peritoneal-macrophages. Chem Pharm Bull (Tokyo) 36:4519–4526Google Scholar
  36. 36.
    Buttkus H (1967) The reaction of myosin with malonaldehyde. J Food Sci 32:432–434. doi: 10.1111/j.1365-2621.1967.tb09703.x CrossRefGoogle Scholar
  37. 37.
    Ames BN, Elson SI, Silver EA (2002) High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding affinity (increased K(m)): relevance to genetic disease and polymorphisms. Am J Clin Nutr 75:616–658PubMedGoogle Scholar
  38. 38.
    Ames BN, Liu J, Atamna H, Hagen TM (2003) Delaying the mitochondrial decay of aging in the brain. Clin Neurosci Res 2:331–338. doi: 10.1016/S1566-2772(03)00010-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jiangang Long
    • 1
    • 2
  • Changsheng Liu
    • 2
  • Lijuan Sun
    • 2
  • Hongxiang Gao
    • 2
  • Jiankang Liu
    • 1
    • 3
  1. 1.Institute for Brain Aging and DementiaUniversity of CaliforniaIrvineUSA
  2. 2.Institute for Nutritional ScienceShanghai Institutes of Biological Sciences, Chinese Academy of SciencesShanghaiChina
  3. 3.Graduate Center for ToxicologyUniversity of Kentucky College of MedicineLexingtonUSA

Personalised recommendations