Skip to main content
Log in

Sodium Azide Induced Neuronal Damage In Vitro: Evidence for Non-Apoptotic Cell Death

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The features of neuronal damage induced by the mitochondrial toxin NaN3 were investigated in rat primary cortical neuron cultures. Cell viability (MTT colorimetric determination) and transmembrane mitochondrial potential (J-C1 fluorescence) were concentration-dependently reduced 24 h after NaN3; neither nuclear fragmentation by DAPI, nor Annexin V positivity by flow cytometry were detected, ruling out the occurrence of apoptosis. The loss in cell viability (to 54 ± 2%) observed 24 h after a 10-min treatment with 3 mM NaN3 was prevented by the NMDA glutamate receptor antagonist MK801 (1 μM), by the antioxidants trolox (100 μM) and acetyl-l-carnitine (1 mM) and by the nitric oxide synthase inhibitor, L-NAME (100 μM), but not by the guanylylcyclase inhibitor ODQ, 10 μM. The mitochondrial dysfunction induced by NaN3 provides a common platform for investigating the mechanisms of both ischemic and degenerative neuronal injury, useful for screening potential protective agents against neuronal death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sas K, Robotka H, Toldi J et al (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239. doi:10.1016/j.jns.2007.01.033

    Article  CAS  PubMed  Google Scholar 

  2. Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Brain Res Rev 54:34–66. doi:10.1016/j.brainresrev.2006.11.003

    Article  CAS  Google Scholar 

  3. Bano D, Nicotera P (2007) Ca2+ signals and neuronal death in brain ischemia. Stroke 38:674–676. doi:10.1161/01.STR.0000256294.46009.29

    Article  CAS  PubMed  Google Scholar 

  4. Moncada S, Bolaños JP (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97:1676–1689. doi:10.1111/j.1471-4159.2006.03988.x

    Article  CAS  PubMed  Google Scholar 

  5. Butler TL, Kassed CA, Pennypacker KR (2003) Signal transduction and neurosurvival in experimental models of brain injury. Brain Res Bull 5:339–351. doi:10.1016/S0361-9230(02)00926-7

    Article  Google Scholar 

  6. Duranteau J, Chandel NS, Kulisz A et al (1998) Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 273:11619–11624. doi:10.1074/jbc.273.19.11619

    Article  CAS  PubMed  Google Scholar 

  7. Leary SC, Hills BC, Lyons CN et al (2002) Chronic treatment with azide in situ leads to an irreversible loss of cytochrome c oxidase activity via holoenzyme dissociation. J Biol Chem 277:11321–11328. doi:10.1074/jbc.M112303200

    Article  CAS  PubMed  Google Scholar 

  8. Safiulina D, Veksler V, Zharkovsky A et al (2006) Loss of mitochondrial membrane potential is associated with increase in mitochondrial volume: physiological role in neurones. J Cell Physiol 206:347–353. doi:10.1002/jcp.20476

    Article  CAS  PubMed  Google Scholar 

  9. Marino S, Marani L, Nazzaro CP et al (2007) Mechanisms of sodium azide-induced changes in intracellular calcium concentration in rat primary cortical neurons. Neurotoxicology 28:622–629. doi:10.1016/j.neuro.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  10. Hoyagi Y, Yamada T, Nishioka K et al (2000) Selective increase in cellular Aβ42 is related to apoptosis but not necrosis. Neuroreport 11:167–171

    Article  Google Scholar 

  11. Grammatopoulos T, Morris K, Ferguson P et al (2002) Angiotensin protects cortical neurons from hypoxic-induced apoptosis via the angiotensin type 2 receptor. Brain Res Mol Brain Res 99:114–124. doi:10.1016/S0169-328X(02)00101-8

    Article  CAS  PubMed  Google Scholar 

  12. Bertrand R, Solary E, O’Connor P et al (1994) Induction of a common pathway of apoptosis by staurosporine. Exp Cell Res 211:314–321. doi:10.1006/excr.1994.1093

    Article  CAS  PubMed  Google Scholar 

  13. Vanlangenakker N, Vanden Berghe T, Krysko D et al (2008) Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med 8:207–220. doi:10.2174/156652408784221306

    Article  CAS  PubMed  Google Scholar 

  14. Lobner D (2000) Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis? J Neurosci Methods 96:147–152. doi:10.1016/S0165-0270(99)00193-4

    Article  CAS  PubMed  Google Scholar 

  15. Zhang F, Yin W, Chen J (2004) Apoptosis in cerebral ischemia: executional and regulatory signaling mechanisms. Neurol Res 26:835–845. doi:10.1179/016164104X3824

    Article  CAS  PubMed  Google Scholar 

  16. Previati M, Lanzoni I, Astolfi L et al (2007) Cisplatin cytotoxicity in organ of corti-derived immortalized cells. J Cell Biochem 101:1185–1197. doi:10.1002/jcb.21239

    Article  CAS  PubMed  Google Scholar 

  17. Cavallini S, Marti M, Marino S et al (2005) Effects of chemical ischemia in cerebral cortex slices. Focus on nitric oxide. Neurochem Int 47:482–490. doi:10.1016/j.neuint.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  18. Varming T, Drejer J, Frandsen A et al (1996) Characterization of a chemical anoxia model in cerebellar granule neurons using sodium azide: protection by nifedipine and MK-801. J Neurosci Res 44:40–46. doi :10.1002/(SICI)1097-4547(19960401)44:1<40::AID-JNR5>3.0.CO;2-I

    Article  CAS  PubMed  Google Scholar 

  19. Kume T, Nishikawa H, Taguchi R et al (2002) Antagonism of NMDA receptors by σ receptor ligands attenuates chemica ischemia-induced neuronal death in vitro. Eur J Pharmacol 455:91–100. doi:10.1016/S0014-2999(02)02582-7

    Article  CAS  PubMed  Google Scholar 

  20. Shahidullah M, Duncan A, Strachan PD et al (2002) Role of catalase in the smooth muscle relaxant actions of sodium azide and cyanamide. Eur J Pharmacol 435:93–101. doi:10.1016/S0014-2999(01)01540-0

    Article  CAS  PubMed  Google Scholar 

  21. Ahern GP, Klyachko VA, Jackson MB (2002) cGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO. Trends Neurosci 25:510–517. doi:10.1016/S0166-2236(02)02254-3

    Article  CAS  PubMed  Google Scholar 

  22. Fiscus RR (2002) Involvement of cyclic GMP and protein kinase G in the regulation of apoptosis and survival in neural cells. Neurosignals 11:175–190. doi:10.1159/000065431

    Article  CAS  PubMed  Google Scholar 

  23. Koesling D, Russwurm M, Mergia E et al (2004) Nitric oxide-sensitive guanylyl cyclase: structure and regulation. Neurochem Int 45:813–819. doi:10.1016/j.neuint.2004.03.011

    Article  CAS  PubMed  Google Scholar 

  24. Berry EV, Toms NJ (2006) Pyruvate and oxaloacetate limit zinc-induced oxidative HT-22 neuronal cell injury. Neurotoxicology 27:1043–1051. doi:10.1016/j.neuro.2006.05.011

    Article  CAS  PubMed  Google Scholar 

  25. Farooqui AA, Ong W-Y, Horrock LA (2006) Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev 58:591–620. doi:10.1124/pr.58.3.7

    Article  CAS  PubMed  Google Scholar 

  26. Abdul HM, Calabrese V, Calvani M et al (2006) Acetyl-l-carnitine-induced up regulation of heat shock proteins protects cortical neurons against amyloid-beta peptide 1–42-mediated oxidative stress and neurotoxicity: implications for Alzheimer’s disease. J Neurosci Res 84:398–408. doi:10.1002/jnr.20877

    Article  CAS  PubMed  Google Scholar 

  27. Bigini P, Larini S, Pasquali C et al (2002) Acetyl-l-carnitine shows neuroprotective and neurotrophic activity in primary culture of rat embryo motoneurons. Neurosci Lett 329:334–338. doi:10.1016/S0304-3940(02)00667-5

    Article  CAS  PubMed  Google Scholar 

  28. Zanelli S, Solenski NJ, Rosenthal RE et al (2005) Mechanisms of ischemic neuroprotection by acetyl-l-carnitine. Ann N Y Acad Sci 1053:153–161. doi:10.1196/annals.1344.013

    Article  CAS  PubMed  Google Scholar 

  29. Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757:1371–1387. doi:10.1016/j.bbabio.2006.06.014

    Article  CAS  PubMed  Google Scholar 

  30. Selvatici R, Falzarano S, Franceschetti L et al (2006) Differential activation of protein kinase C isoforms following chemical ischemia in rat cerebral cortex slices. Neurochem Int 49:729–736. doi:10.1016/j.neuint.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  31. Siniscalchi A, Cavallini S, Marino S et al (2006) Effects of chemical ischemia in cerebral cortex slices. Focus on mitogen activated protein kinase cascade. Ann N Y Acad Sci 1090:445–454. doi:10.1196/annals.1378.047

    Article  CAS  PubMed  Google Scholar 

  32. Gao J, Zhu ZR, Ding HQ et al (2007) Vulnerability of neurons with mitochondrial dysfunction to oxidative stress is associated with down-regulation of thioredoxin. Neurochem Int 50:379–385. doi:10.1016/j.neuint.2006.09.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from University of Ferrara, Italy, from Associazione Emma e Ernesto Rulfo per la Genetica Medica, Parma, Italy and from Fondazione Cassa di Risparmio di Ferrara. We are grateful to Dr. Amanda Neville for the English revision of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Selvatici.

Additional information

Rita Selvatici and Maurizio Previati equally contributed to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvatici, R., Previati, M., Marino, S. et al. Sodium Azide Induced Neuronal Damage In Vitro: Evidence for Non-Apoptotic Cell Death. Neurochem Res 34, 909–916 (2009). https://doi.org/10.1007/s11064-008-9852-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9852-0

Keywords

Navigation