Advertisement

Neurochemical Research

, Volume 34, Issue 5, pp 884–890 | Cite as

Protein Kinase C Regulates the Expression of M1 Receptors and BDNF in Rat Retinal Cells

  • Aline Araujo dos Santos
  • Simone Vidal Medina
  • Leandro de Araújo Martins
  • Elizabeth Giestal de Araujo
Original Paper

Abstract

Protein kinase C (PKC) plays a key role in cellular events including proliferation, survival and differentiation. Our previous study showed the effect of phorbol 12-myristate 13-acetate (PMA), a PKC activator, inducing a decrease in retinal cells proliferation. This effect was mediated by muscarinic type 1 receptors (M1) activation and brain derived neurotrophic factor (BDNF) treatment also induced a decrease in cell proliferation. Based on these results we analyzed the expression of either M1 receptors or BDNF following PMA treatment of retinal cell cultures. Our data demonstrated that PMA induced a decrease in both protein expressions after 48 h in culture. However, after 45 min, PMA induced a transient increase in BDNF expression and a decrease in M1 receptors expression. Analyzing the expression of M1 receptors and BDNF during the postnatal development in vivo, we observed a decrease in both proteins. Taken together our results suggest the involvement of PKC in the control of M1 expression in retinal cells.

Keywords

PMA BDNF M1 receptors Rat retina 

Notes

Acknowledgments

We would like to thank Alexandre José Fernandes, Bernardino Matheus dos Santos and Alecsandro de Jesus Rezende for technical assistance and Arnaldo Paes de Andrade for his helpful discussions. Aline Araujo dos Santos was the recipient of a CAPES fellowship and Simone Vidal Medina was the recipient of a FAPERJ fellowship. This work was supported by grants from CAPES, CNPq, PRONEX-MCT, and FAPERJ.

References

  1. 1.
    Thoenen H, Sendtner M (2002) Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat Neurosci 5:1046–1050. doi: 10.1038/nn938 CrossRefPubMedGoogle Scholar
  2. 2.
    Kawashima K, Fujii T (2008) Basic and clinical aspects of non-neuronal acetylcholine: overview of non-neuronal cholinergic systems and their biological significance. J Pharmacol Sci 106:167–173. doi: 10.1254/jphs.FM0070073 CrossRefPubMedGoogle Scholar
  3. 3.
    Voigt T (1986) Cholinergic amacrine cells in the rat retina. J Comp Neurol 248:19–35. doi: 10.1002/cne.902480103 CrossRefPubMedGoogle Scholar
  4. 4.
    Hutchins JB, Hollyfied JG (1986) Human retinas synthesize and release acetylcholine. J Neurochem 47:81–87PubMedGoogle Scholar
  5. 5.
    Linn DM, Massey SC (1991) Acetylcholine release from the rabbit retina mediated by NMDA receptors. J Neurosci 11:123–133PubMedGoogle Scholar
  6. 6.
    Santos PF, Caramelo OL, Carvalho AP et al (1998) [3H]Acetylcholine release from rat amacrine-like neurons is inhibited by adenosine A1 receptor activation. NeuroReport 9:3693–3998. doi: 10.1097/00001756-199811160-00023 CrossRefPubMedGoogle Scholar
  7. 7.
    Racké K, Juergens UR, Matthiesen S (2006) Control by cholinergic mechanisms. Eur J Pharmacol 553:57–68. doi: 10.1016/j.ejphar.2005.12.050 CrossRefGoogle Scholar
  8. 8.
    Berzaghi MP, Cooper J, Castren E et al (1993) Cholinergic regulation of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) but not neurotrophin-3 (NT-3) mRNA levels in the developing rat hippocampus. J Neurosci 13:3818–3826Google Scholar
  9. 9.
    Liu WS, Heckman CA (1998) The sevenfold way of PKC regulation. Cell Signal 10:529–542. doi: 10.1016/S0898-6568(98)00012-6 CrossRefPubMedGoogle Scholar
  10. 10.
    El-Mekkawy S, Meselhy MR, Nakamura N et al (2000) Anti-HIV phorbol esters from the seeds of Croton tiglium. Phytochemistry 53:457–464. doi: 10.1016/S0031-9422(99)00556-7 CrossRefPubMedGoogle Scholar
  11. 11.
    Pongracz J, Johnson GD, Crocker J et al (1994) The role of protein kinase C in myeloid cell apoptosis. Biochem Soc Trans 22:593–597PubMedGoogle Scholar
  12. 12.
    Allgaier C, Daschmann B, Huang HY et al (1988) Protein kinase C and presynaptic modulation of acetylcholine release in rabbit hippocampus. Br J Pharmacol 93:525–534PubMedGoogle Scholar
  13. 13.
    Iannazzo L, Kotsonis P, Majewski H (2000) Modulation of actylcholine release from mouse cortex by dependence on stimulation intensity. Life Sci 67:31–38. doi: 10.1016/S0024-3205(00)00600-7 CrossRefPubMedGoogle Scholar
  14. 14.
    Barde Y-A, Edgar D, Thoenen H (1982) Purification of a new neurotrophic factor from mammalian brain. EMBO J 1:549–553PubMedGoogle Scholar
  15. 15.
    VonBartheld CS (1998) Neurotrophins in the developing and regenerating visual system. Histol Histopathol 13:437–459Google Scholar
  16. 16.
    Perez M-TR, Caminos E (1995) Expression of brain-derived neurotrophic factor and of its functional receptor in neonatal and adult rat retina. Neurosci Lett 183:96–99. doi: 10.1016/0304-3940(94)11123-Z CrossRefPubMedGoogle Scholar
  17. 17.
    Vecino E, Caminos E, Ugarte M et al (1998) Immunohistochemical distribution of neurotrophins and their receptors in the rat retina and the effects of ischemia and reperfusion. Gen Pharmacol 30:305–314. doi: 10.1016/S0306-3623(97)00361-3 CrossRefPubMedGoogle Scholar
  18. 18.
    Santos AA, Medina SV, Sholl-Franco A et al (2003) PMA decreases the proliferation of retinal cells in vitro: the involvement of acetylcholine and BDNF. Neurochem Int 42:73–80. doi: 10.1016/S0197-0186(02)00059-1 CrossRefPubMedGoogle Scholar
  19. 19.
    Bradford MM (1976) A rapid and sensitive method for the quantification of a microgram quantities of protein utilizing the priciple of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefPubMedGoogle Scholar
  20. 20.
    Schroeder GE, Kotsonis P, Musgrave IF et al (1995) Protein kinase C involvement in maintenance and modulation of noradrenaline release in the mouse brain cortex. Br J Pharmacol 116:2757–2763PubMedGoogle Scholar
  21. 21.
    McKinnon LA, Rosoff M, Hamilton SE et al (1997) Regulation of muscarinic receptor expression and function in culture cells and knock-out mice. Life Sci 60:1101–1104. doi: 10.1016/S0024-3205(97)00053-2 CrossRefPubMedGoogle Scholar
  22. 22.
    Li BS, Ma W, Zhang L et al (2001) Activation of phosphatidylinositol-3 kinase (PI-3K) and extracellular regulated kinases (Erk1/2) is involved in muscarinic receptor-mediated DNA synthesis in neural progenitor cells. J Neurosci 21:1569–1579PubMedGoogle Scholar
  23. 23.
    Ma W, Maric D, Li BS et al (2000) Acetylcholine stimulates cortical precursor cell proliferation in vitro via muscarinic receptor activation and MAP kinase phosphorylation. Eur J NeuroSci 12:1227–1240. doi: 10.1046/j.1460-9568.2000.00010.x CrossRefPubMedGoogle Scholar
  24. 24.
    Martins RAP, Pearson RA (2008) Control of cell proliferation by neurotransmitters in the developing vertebrate retina. Brain Res 1192:37–60. doi: 10.1016/j.brainres.2007.04.076 CrossRefPubMedGoogle Scholar
  25. 25.
    Molina-Holgado E, Khorchid A, Liu HN et al (2003) Regulation of muscarinic receptor function in developing oligodendrocytes by agonist exposure. Br J Pharmacol 138:47–56. doi: 10.1038/sj.bjp.0705002 CrossRefPubMedGoogle Scholar
  26. 26.
    Liles WC, Hunter DD, Meier KE et al (1986) Activation of protein kinase C induces rapid internalization and subsequent degradation of muscarinic acetylcholine receptors in neuroblastoma cells. J Biol Chem 261:5307–5313PubMedGoogle Scholar
  27. 27.
    Wang S-Z, Hu J, Long RM et al (1990) Agonist-induced down-regulation of M1 muscarinic receptors and reduction of their mRNA level in a transfected cell line. FEBS Lett 276:185–188. doi: 10.1016/0014-5793(90)80538-T CrossRefPubMedGoogle Scholar
  28. 28.
    El-Fakahany EE, Lee JH (1986) Agonist-induced muscarinic acetylcholine receptor down-regulation in intact brain cells. Eur J Pharmacol 132:21–30. doi: 10.1016/0014-2999(86)90004-X CrossRefPubMedGoogle Scholar
  29. 29.
    Feigenbaum P, El-Fakahany EE (1984) Short-term regulation of muscarinic acetylcholine receptor binding cultured nerve cells. Res Commun Chem Pathol Pharmacol 43:519–522PubMedGoogle Scholar
  30. 30.
    Feigenbaum P, El-Fakahany EE (1985) Regulation of muscarinic cholinergic receptor density in neuroblastoma cells by brief exposure to agonist: possible involvement in desensitization of receptor function. J Pharmacol Exp Ther 233:134–140PubMedGoogle Scholar
  31. 31.
    Hoover RK, Toews ML (1990) Activation of protein kinase C inhibits internalization and downregulation of muscarinic receptors in 1321N1 human astrocytoma cells. J Pharmacol Exp Ther 253:185–191PubMedGoogle Scholar
  32. 32.
    Waugh MG, Challiss J, Berstein G et al (1999) Agonist-induced desensitization and phosphorylation of M1-muscarinic receptors. Biochem J 338:175–183. doi: 10.1042/0264-6021:3380175 CrossRefPubMedGoogle Scholar
  33. 33.
    Klein WL, Nathanson N, Nirenberg M (1979) Muscarinic acetylcholine receptor regulation by accelerated rate of receptor loss. Biochem Biophys Res Commun 90:506–512. doi: 10.1016/0006-291X(79)91264-6 CrossRefPubMedGoogle Scholar
  34. 34.
    Montiel LM, Quesada J, Jimenez E (2004) Activation of second messenger-dependent protein kinases induces muscarinic acetylcholine receptor desensitization in rat thyroid epithelial cells. Mol Cell Endocrinol 223:35–41. doi: 10.1016/j.mce.2004.05.011 CrossRefPubMedGoogle Scholar
  35. 35.
    Seki M, Nawa H, Fukuchi T et al (2003) BDNF is upregulated by postnatal development and visual experience: quantitative and immunohistochemical analyses of BDNF in the rat retina. Invest Ophthalmol Vis Sci 44:3211–3218. doi: 10.1167/iovs.02-1089 CrossRefPubMedGoogle Scholar
  36. 36.
    Seki M, Tanaka T, Sakai Y et al (2005) Muller cells as a source of brain-derived neurotrophic factor in the retina: noradrenaline upregulates brain-derived neurotrophic factor levels in cultured rat müller cells. Neurochem Res 30:1163–1170. doi: 10.1007/s11064-005-7936-7 CrossRefPubMedGoogle Scholar
  37. 37.
    Knüsel B, Hefti F (1992) K-252 compounds: modulators of neurotrophin signal transduction. J Neurochem 59:1987–1996. doi: 10.1111/j.1471-4159.1992.tb09427.x CrossRefPubMedGoogle Scholar
  38. 38.
    Cepko CL (1993) Retinal cell fate determination. Prog Retin Eye Res 12:1–12Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Aline Araujo dos Santos
    • 1
    • 2
  • Simone Vidal Medina
    • 1
  • Leandro de Araújo Martins
    • 1
  • Elizabeth Giestal de Araujo
    • 1
  1. 1.Departamento de Neurobiologia, Programa de Neuroimunologia, Instituto de Biologia, Centro de Estudos GeraisUniversidade Federal FluminenseNiteróiBrazil
  2. 2.Instituto de Biofísica Carlos Chagas Filho, Coordenação de Ensino de Pós-Graduação, Centro de Ciências da SaúdeUniversidade Federal do Rio de JaneiroIlha do FundãoBrazil

Personalised recommendations