Neurochemical Research

, Volume 34, Issue 5, pp 851–858 | Cite as

Glucocorticoid Receptor Changes Associate with Age in the Paraventricular Nucleus of Type II Diabetic Rat Model

  • Sun Shin Yi
  • In Koo Hwang
  • Myung Sun Chun
  • Yo Na Kim
  • Il Yong Kim
  • In Se Lee
  • Je Kyung Seong
  • Yeo Sung Yoon
Original Paper


Diabetes is a metabolic disorder that is associated with the dysregulation of a number of systems within the body. In the present study, we investigated glucocorticoid receptor (GR) immunoreactivity and its protein levels in the paraventricular nuclei of 4-, 12-, 20- and 30-week-old Zucker diabetic fatty (fa/fa, ZDF) and in Zucker lean control (fa/+ or +/+, ZLC) rats, because the progressive induction of diabetes is detectable in this model after 7 weeks of age and chronic diabetic conditions are maintained after 12 weeks of age. GR immunoreactivity was detected in parvocellular paraventricular nuclei and this and GR protein levels were exponentially increased according to the ages. In particular, GR immunoreactivities and protein levels were markedly more increased in 30-week-old ZDF rats than in age-matched ZLC group and in younger ZDF group. The present study suggests that GR immunoreactivity and its protein level is associated with a degenerative phenotype in the hypothalamus of from 12-weeks old in the ZDF rat type II diabetes model.


Glucocorticoid receptor Zucker diabetic fatty rat Paraventricular nucleus GR immunoreactivity Type II diabetes 


  1. 1.
    Reul JM, de Kloet ER (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117:2505–2511PubMedGoogle Scholar
  2. 2.
    De Kloet ER, Vreugdenhil E, Oitzl MS, Joëls M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269–301. doi: 10.1210/er.19.3.269 CrossRefPubMedGoogle Scholar
  3. 3.
    Lombes M, Binart N, Delahaye F, Baulieu EE, Rafestin-Oblin ME (1994) Differential intracellular localization of human mineralocorticosteroid receptor on binding of agonists and antagonists. Biochem J 302:191–197PubMedGoogle Scholar
  4. 4.
    Herman JP, Patel PD, Akil H, Watson SJ (1989) Localization and regulation of glucocorticoid and mineralocorticoid receptor messenger RNAs in the hippocampal formation of the rat. Mol Endocrinol 3:1886–1894CrossRefPubMedGoogle Scholar
  5. 5.
    Jöhren O, Dendorfer A, Dominiak P, Raasch W (2007) Gene expression of mineralocorticoid and glucocorticoid receptors in the limbic system is related to type-2 like diabetes in leptin-resistant rats. Brain Res 1184:160–167. doi: 10.1016/j.brainres.2007.09.036 CrossRefPubMedGoogle Scholar
  6. 6.
    Ahima R, Krozowski Z, Harlan R (1991) Type I corticosteroid receptor-like immunoreactivity in the rat CNS: distribution and regulation by corticosteroids. J Comp Neurol 313:522–538. doi: 10.1002/cne.903130312 CrossRefPubMedGoogle Scholar
  7. 7.
    Cintra A, Zoli M, Rosen L et al (1994) Mapping and computer assisted morphometry and microdensitometry of glucocorticoid receptor immunoreactive neurons and glial cells in the rat central nervous system. Neuroscience 62:843–897. doi: 10.1016/0306-4522(94)90481-2 CrossRefPubMedGoogle Scholar
  8. 8.
    Choi JH, Hwang IK, Lee CH et al (2008) Immunoreactivities and levels of mineralocorticoid and glucocorticoid receptors in the hippocampal CA1 region and dentate gyrus of adult and aged dogs. Neurochem Res 33:562–568. doi: 10.1007/s11064-007-9479-6 CrossRefPubMedGoogle Scholar
  9. 9.
    Hwang IK, Yoo KY, Nam YS et al (2006) Mineralocorticoid and glucocorticoid receptor expressions in astrocytes and microglia in the gerbil hippocampal CA1 region after ischemic insult. Neurosci Res 54:319–327. doi: 10.1016/j.neures.2005.12.012 CrossRefPubMedGoogle Scholar
  10. 10.
    Erickson K, Drevets W, Schulkin J (2003) Glucocorticoid regulation of diverse cognitive functions in normal and pathological emotional states. Neurosci Biobehav Rev 27:233–246. doi: 10.1016/S0149-7634(03)00033-2 CrossRefPubMedGoogle Scholar
  11. 11.
    Viengchareun S, Le Menuet D, Martinerie L, Munier M, Pascual-Le Tallec L, Lombés M (2007) The mineralocorticoid receptor: insights into its molecular and (patho)physiological biology. Nucl Recept Signal 5. doi: 10.1621/nrs.05012
  12. 12.
    Sironi L, Tremoli E, Miller I et al (2001) Acute-phase proteins before cerebral ischemia is stroke-prone rats: identification by proteomics. Stoke 32:753–760Google Scholar
  13. 13.
    Alnemri ES, Maksymowych AB, Robertson NM, Litwack G (1991) Overexpression and characterization of the human mineralocorticoid receptor. J Biochem 266:18072–18081Google Scholar
  14. 14.
    Rashid S, Lewis GF (2005) The mechanisms of differential glucocorticoid and mineralocorticoid action in the brain and peripheral tissue. Clin Biochem 38:401–409. doi: 10.1016/j.clinbiochem.2004.11.009 CrossRefPubMedGoogle Scholar
  15. 15.
    Dimitriadis G, Leighton B, Parry-Billings M et al (1997) Effects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in rat skeletal muscle. Biochem J 321:707–712PubMedGoogle Scholar
  16. 16.
    Nyirenda MJ, Lindsay RS, Kenyon CJ, Burchell A, Seckl JR (1998) Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes intolerance in adult offspring. J Clin Invest 101:2174–2181. doi: 10.1172/JCI1567 CrossRefPubMedGoogle Scholar
  17. 17.
    Desrocher M, Rovet (2004) Neurocognitive correlates of type 1 diabetes mellitus in child hood. Child Neuropsychol 10:36–52. doi: 10.1076/chin. PubMedGoogle Scholar
  18. 18.
    Messier C (2005) Impact of impaired glucose tolerance and type 2 diabetes on cognitive aging. Neurobiol Aging 26:S26–S30. doi: 10.1016/j.neurobiolaging.2005.09.014 CrossRefGoogle Scholar
  19. 19.
    Chan O, Inouye K, Akirav E et al (2005) Insulin alone increases hypothalamo–pituitary–adrenal activity, and diabetes lowers peak stress responses. Endocrinology 146:1382–1390. doi: 10.1210/en.2004-0607 CrossRefPubMedGoogle Scholar
  20. 20.
    Magariños AM, McEwen BS (2000) Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proc Natl Acad Sci USA 97:11056–11061. doi: 10.1073/pnas.97.20.11056 CrossRefPubMedGoogle Scholar
  21. 21.
    Watt KM, Machem VP, Leedom TA et al (2005) Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism. Diabetes 54:1846–1853. doi: 10.2337/diabetes.54.6.1846 CrossRefGoogle Scholar
  22. 22.
    Welberg LA, Seckl JR, Holmes MC (2000) Inhibition of 11β-hydrozysteroid dehydrogenase, the foetoplacental barrier to maternal glucocorticoids, permanently programs amydgala GR mRNA expression and anxiety-like behaviour in the offspring. Eur J NeuroSci 12:1047–1054. doi: 10.1046/j.1460-9568.2000.00958.x CrossRefPubMedGoogle Scholar
  23. 23.
    Inouye KE, Chan O, Yue JT et al (2008) The effect of long-term insulin treatment with and without antecedent hypoglycemia on neuropeptide and corticosteroid receptor expression in the brains of diabetic rats. Brain Res Bull. doi: 10.1016/j.brainresbull.2008.07.001
  24. 24.
    Beck B, Max JP, Richy S, Stricker-Krongrad A (2004) Feeding response to a potent prolactin-releasing peptide agonist in lean and obese Zucker rats. Brain Res 1016:135–138. doi: 10.1016/j.brainres.2004.05.002 CrossRefPubMedGoogle Scholar
  25. 25.
    Hoshi S, Shu Y, Yoshida F et al (2002) Podocyte injury promotes progressive nephropathy in Zucker diabetic fatty rats. Lab Invest 82:25–35PubMedGoogle Scholar
  26. 26.
    Mizuno M, Sada T, Kato M, Koike H (2002) Renoprotective effects of blockade of angiotensin II AT1 receptors in an animal model of type 2 diabetes. Hypertens Res 25:271–278. doi: 10.1291/hypres.25.271 CrossRefPubMedGoogle Scholar
  27. 27.
    Chan O, Chan S, Inouye K, Vranic M, Matthews SG (2001) Molecular regulation of the hypothalamo–pituitary–adrenal axis in streptozotocin-induced diabetes: effects of insulin treatment. Endocrinology 142:4872–4879. doi: 10.1210/en.142.11.4872 CrossRefPubMedGoogle Scholar
  28. 28.
    Makimura H, Mizuno TM, Isoda F, Beasley J, Silverstein JH, Mobbs CV (2003) Role of glucocorticoids in mediating effects of fasting and diabetes on hypothalamic gene expression. BMC Physiol 3:5. doi: 10.1186/1472-6793-3-5 CrossRefPubMedGoogle Scholar
  29. 29.
    Harmon JS, Gleason CE, Tanaka Y, Poitout V, Robertson RP (2001) Antecedent hyperglycemia, not hyperlipidemia, is associated with increased islet triacylglycerol content and decreased insulin gene mRNA level in Zucker diabetic fatty rats. Diabetes 50:2481–2486. doi: 10.2337/diabetes.50.11.2481 CrossRefPubMedGoogle Scholar
  30. 30.
    Hwang IK, Yi SS, Kim YN et al (2008) Reduced hippocampal cell differentiation in the subgranular zone of the dentate gyrus in a rat model of type II diabetes. Neurochem Res 33:394–400. doi: 10.1007/s11064-007-9440-8 CrossRefPubMedGoogle Scholar
  31. 31.
    Yi SS, Hwang IK, Kim YN et al (2008) Enhanced expressions of arginine vasopressin (Avp) in the Hypothalamic paraventricular and supraoptic nuclei of type 2 diabetic rats. Neurochem Res 33:867–872. doi: 10.1007/s11064-007-9519-2 CrossRefPubMedGoogle Scholar
  32. 32.
    Barber M, Kasturi BS, Austin ME, Patel KP, MohanKumar SM, MohanKumar PS (2003) Diabetes-induced neuroendocrine changes in rats: role of brain monoamines, insulin and leptin. Brain Res 964:128–135. doi: 10.1016/S0006-8993(02)04091-X CrossRefPubMedGoogle Scholar
  33. 33.
    Chan O, Inouye K, Akirav EM et al (2005) Hyperglycemia does not increase basal hypothalamo–pituitary–adrenal activity in diabetes but it does impair the HPA response to insulin-induced hypoglycemia. Am J Physiol Regul Integr Comp Physiol 289:R235–R246. doi: 10.1152/ajpregu.00674.2004 PubMedGoogle Scholar
  34. 34.
    Andrews RC, Walker BR (1999) Glucocorticoids and insulin resistance: old hormones, new targets. Clin Sci (Lond) 96:513–523. doi: 10.1042/CS19980388 Google Scholar
  35. 35.
    Andrews RC, Herlihy O, Livingstone DE, Andrew R, Walker BR (2002) Abnormal cortisol metabolism and tissue sensitivity to cortisol in patients with glucose intolerance. J Clin Endocrinol Metab 87:5587–5593. doi: 10.1210/jc.2002-020048 CrossRefPubMedGoogle Scholar
  36. 36.
    Björntorp P, Holm G, Rosmond R (1999) Hypothalamic arousal, insulin resistance and Type 2 diabetes mellitus. Diabet Med 16:373–383. doi: 10.1046/j.1464-5491.1999.00067.x CrossRefPubMedGoogle Scholar
  37. 37.
    Chiodini I, Di Lembo S, Morelli V et al (2006) Hypothalamic–pituitary–adrenal activity in type 2 diabetes mellitus: role of autonomic imbalance. Metabolism 55:1135–1140. doi: 10.1016/j.metabol.2006.04.010 CrossRefPubMedGoogle Scholar
  38. 38.
    Etgen GJ, Oldham BA (2000) Profiling of Zucker diabetic fatty rats in their progression to the overt diabetic state. Metabolism 49:684–688. doi: 10.1016/S0026-0495(00)80049-9 CrossRefPubMedGoogle Scholar
  39. 39.
    Vora JP, Zimsen SM, Houghton DC, Anderson S (1996) Evolution of metabolic and renal changes in the ZDF/Drt-fa rat model of type II diabetes. J Am Soc Nephrol 7:113–117PubMedGoogle Scholar
  40. 40.
    Nikodemova M, Diehl CR, Aguilera G (2002) Multiple sites of control of type-1 corticotropin releasing hormone receptor levels in the pituitary. Arch Physiol Biochem 110:123–128. doi: 10.1076/apab. CrossRefPubMedGoogle Scholar
  41. 41.
    Vale W, Vaughan J, Perrin MH (1997) Corticotropin-releasing factor (CRF) family ligands and their receptors. Endocrinologist 7:3S–9SCrossRefGoogle Scholar
  42. 42.
    Cameron OG, Kronfol Z, Greden JF, Carroll BJ (1984) Hypothalamic–pituitary–adrenocortical activity in patients with diabetes mellitus. Arch Gen Psychiatry 41:1090–1095PubMedGoogle Scholar
  43. 43.
    Huang Q, Timofeeva E, Richard D (2006) Corticotropin-releasing factor and its receptors in the brain of rats with insulin and corticosterone deficits. J Mol Endocrinol 37:213–226. doi: 10.1677/jme.1.02103 CrossRefPubMedGoogle Scholar
  44. 44.
    Dalm S, Enthoven L, Meijer OC et al (2005) Age-related changes in hypothalamic–pituitary–adrenal axis activity of male C57BL/6J mice. Neuroendocrinology 81:372–380. doi: 10.1159/000089555 CrossRefPubMedGoogle Scholar
  45. 45.
    Brunson KL, Baram TZ, Bender RA (2005) Hippocampal neurogenesis is not enhanced by lifelong reduction of glucocorticoid levels. Hippocampus 15:491–501. doi: 10.1002/hipo.20074 CrossRefPubMedGoogle Scholar
  46. 46.
    Casolini P, Catalani A, Zuena AR, Angelucci L (2002) Inhibition of COX-2 reduces the age-dependent increase of hippocampal inflammatory markers, corticosterone secretion, and behavioral impairments in the rat. J Neurosci Res 68:337–343. doi: 10.1002/jnr.10192 CrossRefPubMedGoogle Scholar
  47. 47.
    Swaab DF, Bao AM, Lucassen PJ (2005) The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 4:141–194. doi: 10.1016/j.arr.2005.03.003 CrossRefPubMedGoogle Scholar
  48. 48.
    McEwen BS (1999) Stress and hippocampal plasticity. Annu Rev Neurosci 22:105–122. doi: 10.1146/annurev.neuro.22.1.105 CrossRefPubMedGoogle Scholar
  49. 49.
    Hügin-Flores ME, Steimer T, Schulz P, Vallotton MB, Aubert ML (2003) Chronic corticotrophin-releasing hormone and vasopressin regulate corticosteroid receptors in rat hippocampus and anterior pituitary. Brain Res 976:159–170. doi: 10.1016/S0006-8993(03)02585-X CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sun Shin Yi
    • 1
  • In Koo Hwang
    • 1
  • Myung Sun Chun
    • 1
  • Yo Na Kim
    • 1
  • Il Yong Kim
    • 1
  • In Se Lee
    • 1
  • Je Kyung Seong
    • 1
  • Yeo Sung Yoon
    • 1
  1. 1.Department of Anatomy and Cell Biology, College of Veterinary Medicine and BK21 Program for Veterinary ScienceSeoul National UniversitySeoulSouth Korea

Personalised recommendations