Neurochemical Research

, Volume 33, Issue 12, pp 2583–2592 | Cite as

Parp and Cell Death or Protection in Rat Primary Astroglial Cell Cultures Under LPS/IFNγ Induced Proinflammatory Conditions

  • V. Spina-Purrello
  • D. Patti
  • A. M. Giuffrida-Stella
  • V. G. Nicoletti
Original Paper


The enzyme poly(ADP-ribose)polymerase (PARP) has a leader role in the DNA damage survey mechanisms by its nick-sensor function, but it is also involved in the early events of the programmed cell death, particularly during inflammatory injury, as a coactivator of NF-kB. In the present study, we evaluated the PARP involvement in the mechanisms of protection and/or cell death in rat astroglial cell cultures during the early phase of proinflammatory commitment after lipopolysaccharide and interferon gamma treatment. According with the recent findings that PARP-1 phosphorylation by MAPK/ERK-2 pathway seems to modulate PARP activation, in time course experiments we demonstrated that a very early PARP activation and expression is able to trigger a cell death pathway, DNA damage independent, during strong proinflammatory insults, maintaining its role of guardian of the genome stability only during the normal cell cycling.


PARP LPS/IFNgamma Inflammatory stress Cell death 



A special acknowledge goes to our scientific guide Prof. Anna Maria Giuffrida-Stella, that spent her life for the science and introduced us in this exciting world. This work was realized with the financial support of “Ricerca Ateneo”, University of Catania, FIRB RBNE03PX83, PRIN prot. 2005054147.


  1. 1.
    Kruman II, Schwartz EI (2008) DNA damage response and neuroprotection. Front Biosci 13:2504–2515. doi: 10.2741/2862 PubMedCrossRefGoogle Scholar
  2. 2.
    Lee SM, Yune TY, Kim SJ et al (2004) Minocycline inhibits apoptotic cell death via attenuation of TNF-α expression following iNOS/NO induction by lipopolysaccaride in neuron/glia co-cultures. J Neurochem 91:568–578. doi: 10.1111/j.1471-4159.2004.02780.x PubMedCrossRefGoogle Scholar
  3. 3.
    Liu H, Colavitti R, Rovira II et al (2005) Redox-dependent transcriptional regulation. Circ Res 97:967–974. doi: 10.1161/01.RES.0000188210.72062.10 PubMedCrossRefGoogle Scholar
  4. 4.
    Chan PH (2004) Mitochondria and neuronal death/survival signaling pathway in cerebral ischemia. Neurochem Res 29:1943–1949. doi: 10.1007/s11064-004-6869-x PubMedCrossRefGoogle Scholar
  5. 5.
    Nicoletti VG, Caruso A, Tendi EA et al (1998) Effect of nitric oxide synthase induction on the expression of mitochondrial respiratory chain enzyme subunits in mixed cortical and astroglial cell cultures. Biochimie 80:871–881. doi: 10.1016/S0300-9084(00)88882-3 PubMedCrossRefGoogle Scholar
  6. 6.
    Bolaños JP, Almeida A, Stewart V et al (1997) Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem 68:2227–2240PubMedCrossRefGoogle Scholar
  7. 7.
    De Murcia JM, Niedergang C, Trucco C et al (1997) Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 94:7303–7307. doi: 10.1073/pnas.94.14.7303 PubMedCrossRefGoogle Scholar
  8. 8.
    D’Amours D, Desnoyers S, D’Silva I et al (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear function. Biochem J 342:249–268. doi: 10.1042/0264-6021:3420249 PubMedCrossRefGoogle Scholar
  9. 9.
    Herceg Z, Wang ZQ (2001) Function of poly(ADP-ribose)polimerase (PARP) in DNA repair, genomic integrity and cell death. Mutat Res 477:97–110. doi: 10.1016/S0027-5107(01)00111-7 PubMedGoogle Scholar
  10. 10.
    Lindhal T, Sah MS, Poirier GG et al (1995) Posttranslational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem Sci 20:405–411. doi: 10.1016/S0968-0004(00)89089-1 CrossRefGoogle Scholar
  11. 11.
    Simbulan-Rosenthal CM, Rosenthal DS, Hilz H et al (1996) The expression of poly(ADP-ribose) polymerase during differentiation-linked DNA replication reveals that this enzyme is a component of the multiprotein DNA replication complex. Biochemistry 35:11622–11633. doi: 10.1021/bi953010z PubMedCrossRefGoogle Scholar
  12. 12.
    Yakovlev AG, Wang G, Stoica BA et al (2000) A role of the Ca2+/Mg2+-dependent endonuclease in apoptosis and its inhibition by poly(ADP-ribose) polymerase. J Biol Chem 275:21302–21308. doi: 10.1074/jbc.M001087200 PubMedCrossRefGoogle Scholar
  13. 13.
    Bauer PI, Chen H, Kenesi E, Kenessey I et al (2001) Molecular interaction between Poly(ADP-ribose) polimerase (PARP-1) and topoisomerase I: identification of topology of binding. FEBS Lett 506:239–242. doi: 10.1016/S0014-5793(01)02919-2 PubMedCrossRefGoogle Scholar
  14. 14.
    Dantzer F, Schreiber V, Niedergang C et al (1999) Involvement of Poly(ADP-ribose) polimerase in base excision repair. Biochimie 81:69–75. doi: 10.1016/S0300-9084(99)80040-6 PubMedCrossRefGoogle Scholar
  15. 15.
    Le Page F, Schreiber V, Dhérin C et al (2003) Poly(ADP-ribose) polymerase-1 (PARP-1) is required in murine cell lines for base excision repair of oxidative DNA damage in the absence of DNA polymerase. J Biol Chem 278:18471–18477. doi: 10.1074/jbc.M212905200 PubMedCrossRefGoogle Scholar
  16. 16.
    Shall S, De Murcia G (2000) Poly(ADP-ribose) polimerase-1: what we have learned from the deficient mouse model? Mutat Res 460:1–15PubMedGoogle Scholar
  17. 17.
    Eliasson MJL, Sampei K, Mandir AS et al (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischaemia. Nat Med 3:1089–1095. doi: 10.1038/nm1097-1089 PubMedCrossRefGoogle Scholar
  18. 18.
    Ha HC, Snyder SH (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA 96:13978–13982. doi: 10.1073/pnas.96.24.13978 PubMedCrossRefGoogle Scholar
  19. 19.
    Kamanaka Y, Kondo K, Ikeda Y et al (2004) Neuroprotective effects of ONO-1924H, an inhibitor of poly ADP-ribose polymerase (PARP), on cytotoxicity of PC12 cells and ischemic cerebral damage. Life Sci 76:151–162. doi: 10.1016/j.lfs.2004.04.057 PubMedCrossRefGoogle Scholar
  20. 20.
    Cozzi A, Cipriani G, Fossati S et al (2006) Poly(ADP-ribose) accumulation and enhancement of postischemic brain damage in 110-kDa poly(ADP-ribose) glycohydrolase null mice. J Cereb Blood Flow Metab 26:684–695. doi: 10.1038/sj.jcbfm.9600222 PubMedCrossRefGoogle Scholar
  21. 21.
    Moroni F (2008) Poly(ADP-ribose)polymerase 1 (PARP-1) and postischemic brain damage. Curr Opin Pharmacol 8:96–103. doi: 10.1016/j.coph.2007.10.005 PubMedCrossRefGoogle Scholar
  22. 22.
    Mandir AS, Przedborski S, Jackson-Lewis V et al (1999) Poly(ADP-ribose) polymerase activation mediates 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci USA 96:5774–5779. doi: 10.1073/pnas.96.10.5774 PubMedCrossRefGoogle Scholar
  23. 23.
    Cosi C, Marie M (1999) Implication of Poly(ADP-ribose) polymerase (PARP) in neurodegeneration and brain energy metabolism. Decreases in mouse brain NAD+ and ATP caused by MPTP are prevented by the PARP inhibitor benzamide. Ann N Y Acad Sci 890:227–239. doi: 10.1111/j.1749-6632.1999.tb07998.x PubMedCrossRefGoogle Scholar
  24. 24.
    Cosi C, Suzuki H, Milani D et al (1994) Poly(ADP-ribose) polymerase early involvement in glutamate-induced neurotoxicity in cultured cerebellar granule cells. J Neurosci Res 39:38–46. doi: 10.1002/jnr.490390106 PubMedCrossRefGoogle Scholar
  25. 25.
    Pieper AA, Blackshaw S, Clements EE et al (2000) Poly(ADP-ribosyl)ation basally activated by DNA strand breaks reflects glutamate-nitric oxide neurotransmission. Proc Natl Acad Sci USA 97:1845–1850. doi: 10.1073/pnas.97.4.1845 PubMedCrossRefGoogle Scholar
  26. 26.
    Meli E, Pangallo M, Picca R et al (2004) Differential role of (ADP-ribose) polymerase-1 in apoptotic and necrotic death induced by mild or intense NMDA exposure in vitro. Mol Cell Neurosci 25:172–180. doi: 10.1016/j.mcn.2003.09.016 PubMedCrossRefGoogle Scholar
  27. 27.
    Chiarugi A, Moskowitz MA (2003) Poly(ADP-ribose) polymerase-1 activity promotes NF-kB-driven transcription and microglial activation: implication for neurodegenerative disorders. J Neurochem 85:306–317. doi: 10.1046/j.1471-4159.2003.01684.x PubMedCrossRefGoogle Scholar
  28. 28.
    Zheng J, Devalaraja-Narashimha K, Singaravelu K et al (2005) Poly(ADP-ribose) polymerase-1 gene ablation protects mice from ischemic renal injury. Am J Physiol Renal Physiol 288:F387–F398. doi: 10.1152/ajprenal.00436.2003 PubMedCrossRefGoogle Scholar
  29. 29.
    Oliver FJ, de Menissier Murcia J, Nacci C et al (1999) Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J 18:4446–4454. doi: 10.1093/emboj/18.16.4446 PubMedCrossRefGoogle Scholar
  30. 30.
    Veres B, Radnai B, Gallyas F et al (2004) Regulation of kinase cascades and transcription factors by a poly(ADP-ribose) polymerase-1 inhibitor, 4-hydroxyquinazoline, in lipopolysaccharide-induced inflammation in mice. J Pharmacol Exp Ther 310:247–255. doi: 10.1124/jpet.104.065151 PubMedCrossRefGoogle Scholar
  31. 31.
    Yu Z, Kuncewicz T, Dubinsky WP et al (2006) Nitric oxide-dependent negative feedback of PARP-1 trans-activation of the inducible nitric-oxide synthase gene. J Biol Chem 281:9101–9109. doi: 10.1074/jbc.M511049200 PubMedCrossRefGoogle Scholar
  32. 32.
    Olszanecki RA, Gêbska J, Jawieñ A et al (2006) Inhibition of NOS-2 induction in LPS-stimulated J774.2 cells by 1, 5-isoquinolinediol, an inhibitor of PARP. J Physiol Pharmacol 57:109–117PubMedGoogle Scholar
  33. 33.
    Bursztajn S, Feng JJ, Berman SA et al (2000) Poly ADP-ribose polymerase induction is an early signal of apoptosis in human neuroblastoma. Brain Res Mol Brain Res 76:363–376. doi: 10.1016/S0169-328X(00)00026-7 PubMedCrossRefGoogle Scholar
  34. 34.
    Koh DW, Dawson TM, Dawson VL (2005) Mediation of cell death by poly(ADP-ribose) polymerase-1. Pharmacol Res 52:5–14. doi: 10.1016/j.phrs.2005.02.011 PubMedCrossRefGoogle Scholar
  35. 35.
    Yu SW, Wang H, Poitras MF et al (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263. doi: 10.1126/science.1072221 PubMedCrossRefGoogle Scholar
  36. 36.
    Soldani C, Scovassi AI (2002) Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7:321–328. doi: 10.1023/A:1016119328968 PubMedCrossRefGoogle Scholar
  37. 37.
    Petrilli V, Herceg Z, Hassa PO et al (2004) Noncleavable Poly(ADP-ribose polymerase-1 regulates the inflammation response in mice. J Clin Invest 114:1072–1081PubMedGoogle Scholar
  38. 38.
    Cohen-Armon M (2007) PARP-1 activation in the ERK signaling pathway. Trends Pharmacol Sci 28:556–560. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  39. 39.
    Avola R, Condorelli DF, Surrentino S et al (1988) Effect of epidermal growth factor and insulin on DNA, RNA and cytosckeletal protein labeling in primary rat astroglial cell cultures. J Neurosci Res 19:230–238. doi: 10.1002/jnr.490190208 PubMedCrossRefGoogle Scholar
  40. 40.
    Lowry OM, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  41. 41.
    Laemmli UK (1970) Cleavage of the structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi: 10.1038/227680a0 PubMedCrossRefGoogle Scholar
  42. 42.
    Spina-Purrello V, Avola R, Condorelli DF et al (1990) ADP-ribosylation of proteins in brain regions of rats during postnatal development. Int J Dev Neurosci 8:167–174. doi: 10.1016/0736-5748(90)90007-O PubMedCrossRefGoogle Scholar
  43. 43.
    Masmoudi A, Islam F, Mandel P (1988) ADP-ribosylation of highly purified rat brain mitochondria. J Neurochem 51:188–193. doi: 10.1111/j.1471-4159.1988.tb04854.x PubMedCrossRefGoogle Scholar
  44. 44.
    Henry RJ, Chiamori H, Coolub OJ, Berkman S (1960) Revised spectrophotometric method for the determination of glutamic-oxalacetic transaminase, glutamic-pyruvic transaminase and lactic acid dehydrogenase. Am J Clin Pathol 34:381–398PubMedGoogle Scholar
  45. 45.
    Mander P, Brown GC (2005) Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: a dual-key mechanism of inflammatory neurodegeneration. J Neuroinflammation 2(20):1–15Google Scholar
  46. 46.
    Von Bernhardi R (2007) Glial cell dysregulation: a new perspective on Alzheimer disease. Neurotox Res 12:215–232CrossRefGoogle Scholar
  47. 47.
    Dell’Albani P, Santangelo R, Torrisi L, Nicoletti VG et al (2001) JAK/STAT signaling pathway mediates cytokine-induced iNOS expression in primary astroglial cell cultures. J Neurosci Res 65:417–424. doi: 10.1002/jnr.1169 PubMedCrossRefGoogle Scholar
  48. 48.
    Smets LA, Loesberg C, Janssen M, Van Rooij H (1990) Intracellular inhibition of mono(ADP-ribosylation) by meta-iodobenzylguanidine: specificity, intracellular concentration and effects on glucocorticoid-mediated cell lysis. Biochim Biophys Acta 1054:49–55. doi: 10.1016/0167-4889(90)90204-Q PubMedCrossRefGoogle Scholar
  49. 49.
    Le Page C, Sanceau J, Drapier JC, Wietzerbin J (1998) Inhibitors of ADP-ribosylation impair inducible nitric oxide synthase gene transcription through inhibition of NF-kB activation. Biochem Biophys Res Commun 243:451–457. doi: 10.1006/bbrc.1998.8113 PubMedCrossRefGoogle Scholar
  50. 50.
    Di Meglio S, Tramontano F, Cimmino G et al (2004) Dual role for poly(ADP-ribose)polymerase-1 and -2 and poly(ADP-ribose)glycohydrolase as DNA-repair and pro-apoptotic factors in rat germinal cells exposed to nitric oxide donors. Biochim Biophys Acta 1692:35–44. doi: 10.1016/S0167-4889(04)00073-4 PubMedCrossRefGoogle Scholar
  51. 51.
    Nicoletti VG, Giuffrida-Stella AM (2003) Role of PARP under stress conditions: cell death or protection? Neurochem Res 28:187–194. doi: 10.1023/A:1022316914492 PubMedCrossRefGoogle Scholar
  52. 52.
    Endres M, Scott G, Namura S et al (1998) Role of peroxynitrite and neuronal nitric oxide synthase in the activation of poly(ADP-ribose) synthetase in a murine model of cerebral ischemia-reperfusion. Neurosci Lett 248:41–44. doi: 10.1016/S0304-3940(98)00224-9 PubMedCrossRefGoogle Scholar
  53. 53.
    Chiarugi A (2002) Poly(ADP-ribose) polymerase: killer or conspirator? The ‘suicide hypothesis’ revisited. Trends Pharmacol Sci 23:122–129. doi: 10.1016/S0165-6147(00)01902-7 PubMedCrossRefGoogle Scholar
  54. 54.
    Moroni F, Meli E, Peruginelli F et al (2001) Poly(ADP-ribose) polymerase inhibitors attenuate necrotic but not apoptotic neuronal death in experimental models of cerebral ischemia. Cell Death Differ 8:921–932. doi: 10.1038/sj.cdd.4400884 PubMedCrossRefGoogle Scholar
  55. 55.
    Iwashita A, Yamazaki S, Mihara K et al (2004) Neuroprotective effects of a novel poly(ADP-ribose) polymerase-1 inhibitor, 2-[3-[4-(4-chlorophenyl)-1-piperazinyl] propyl]-4(3H)-quinazolinone (FR255595), in an in vitro model of cell death and in mouse 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model of Parkinson’s disease. J Pharmacol Exp Ther 309:1067–1078. doi: 10.1124/jpet.103.064642 PubMedCrossRefGoogle Scholar
  56. 56.
    Outeiro TF, Grammatopoulos TN, Altmann S et al (2007) Pharmacological inhibition of PARP-1 reduces alpha-synuclein- and MPP(+)-induced cytotoxicity in Parkinson’s disease in vitro models. Biochem Biophys Res Commun 357:596–602. doi: 10.1016/j.bbrc.2007.03.163 PubMedCrossRefGoogle Scholar
  57. 57.
    Adamczyk A, Jeśko H, Strosznajder RP (2005) Alzheimer’s disease related peptides affected cholinergic receptor mediated poly(ADP-ribose) polymerase activity in the hippocampus. Folia Neuropathol 43:139–142PubMedGoogle Scholar
  58. 58.
    Wang SJ, Wang SH, Song ZF et al (2007) Poly(ADP-ribose) polymerase inhibitor is neuroprotective in epileptic rat via apoptosis-inducing factor and Akt signaling. NeuroReport 18:1285–1289. doi: 10.1097/WNR.0b013e32826fb3a5 PubMedCrossRefGoogle Scholar
  59. 59.
    De la Lastra CA, Villegas I, Sánchez-Fidalgo S (2007) Poly(ADP-ribose) polymerase inhibitors: new pharmacological functions and potential clinical implications. Curr Pharm Des 13:933–962. doi: 10.2174/138161207780414241 CrossRefGoogle Scholar
  60. 60.
    Fossati S, Cipriani G, Moroni F, Chiarugi A (2007) Neither energy collapse nor transcription underlie in vitro neurotoxicity of poly(ADP-ribose) polymerase hyper-activation. Neurochem Int 50:203–210. doi: 10.1016/j.neuint.2006.08.009 PubMedCrossRefGoogle Scholar
  61. 61.
    Besson VC, Margaill I, Plotkine M, Marchand-Verrecchia C (2003) Deleterious activation of poly(ADP-ribose)polymerase-1 in brain after in vivo oxidative stress. Free Radic Res 37:1201–1208. doi: 10.1080/10715760310001612568 PubMedCrossRefGoogle Scholar
  62. 62.
    Benchoua A, Couriaud C, Guégan C et al (2002) Active caspase-8 translocates into the nucleus of apoptotic cells to inactivate poly(ADP-ribose) polymerase-2. J Biol Chem 277:34217–34222. doi: 10.1074/jbc.M203941200 PubMedCrossRefGoogle Scholar
  63. 63.
    Viswanath V, Wu Y, Boonplueang R (2001) Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinson’s disease. J Neurosci 21:9519–9528PubMedGoogle Scholar
  64. 64.
    Pleschke JM, Kleczkowska HE, Strohm M, Althaus FR (2000) Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J Biol Chem 275:40974–40980. doi: 10.1074/jbc.M006520200 PubMedCrossRefGoogle Scholar
  65. 65.
    Audebert M, Calsou P (2008) Effect of double-strand break DNA sequence on the PARP-1 NHEJ pathway. Biochem Biophys Res Commun 369(3):982–988Google Scholar
  66. 66.
    Simbulan-Rosenthal CM, Ly DH, Rosenthal DS et al (2000) Misregulation of gene expression in primary fibroblasts lacking poly(ADP-ribose). Proc Natl Acad Sci USA 97:11274–11279. doi: 10.1073/pnas.200285797 PubMedCrossRefGoogle Scholar
  67. 67.
    Cardoso RS, Espanhol AR, Passos GAS, Sakamoto-Hojo ET (2002) Differential gene expression in γ-irradiated BALB/3T3 fibroblasts under the influence of 3-aminobenzamide, an inhibitor of PARP enzyme. Mutat Res 508:33–40. doi: 10.1016/S0027-5107(02)00141-0 PubMedGoogle Scholar
  68. 68.
    Yang YG, Cortes U, Patnaik S et al (2004) Ablation of PARP-1 does not interfere with the repair of DNA double-strand breaks, but compromises the reactivation of stalled replication forks. Oncogene 23:3872–3882. doi: 10.1038/sj.onc.1207491 PubMedCrossRefGoogle Scholar
  69. 69.
    Malanga M, Althaus FR (2004) Poly(ADP-ribose) reactivates stalled DNA topoisomerase I and induces DNA strand break resealing. J Biol Chem 279:5244–5248. doi: 10.1074/jbc.C300437200 PubMedCrossRefGoogle Scholar
  70. 70.
    Malanga M, Althaus FR (2005) The role of poly(ADP-ribose) in the DNA damage signaling network. Biochem Cell Biol 83:354–364. doi: 10.1139/o05-038 PubMedCrossRefGoogle Scholar
  71. 71.
    Haince JF, McDonald D, Rodrigue A et al (2008) PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J Biol Chem 283:1197–1208. doi: 10.1074/jbc.M706734200 PubMedCrossRefGoogle Scholar
  72. 72.
    Vodenicharov MD, Sallmann FR, Satoh MS, Poirier G (2000) Base excision repair is efficient in cells lacking Poly(ADP-ribose) polymerase 1. Nucleic Acids Res 28:3887–3896. doi: 10.1093/nar/28.20.3887 PubMedCrossRefGoogle Scholar
  73. 73.
    Chatterjee S, Berger NA (1994) Growth-phase-dependent response to DNA damage in poly (ADP-ribose) polymerase deficient cell lines: based for a new hypothesis describing the role of poly (ADP-ribose) polymerase in DNA replication and repair. Mol Cell Biochem 138:61–69. doi: 10.1007/BF00928444 PubMedCrossRefGoogle Scholar
  74. 74.
    Ghabreau L, Roux JP, Frappart PO et al (2004) Poly(ADP-ribose) polymerase-1, a novel partner of progesterone receptors in endometrial cancer and its precursors. Int J Cancer 109:317–321. doi: 10.1002/ijc.11731 PubMedCrossRefGoogle Scholar
  75. 75.
    Visochek L, Steingart RA, Vulih-Shultzman I et al (2005) PolyADP-ribosylation is involved in neurotrophic activity. J Neurosci 25:7420–7428. doi: 10.1523/JNEUROSCI.0333-05.2005 PubMedCrossRefGoogle Scholar
  76. 76.
    Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44. doi: 10.1080/02699050500284218 PubMedCrossRefGoogle Scholar
  77. 77.
    Wang ZQ, Wu DC, Huang FP, Yang GY (2004) Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Res 996:55–66. doi: 10.1016/j.brainres.2003.09.074 PubMedCrossRefGoogle Scholar
  78. 78.
    Chu CT, Levinthal DJ, Kulich SM et al (2004) Oxidative neuronal injury. The dark side of ERK1/2. Eur J Biochem 271:2060–2066. doi: 10.1111/j.1432-1033.2004.04132.x PubMedCrossRefGoogle Scholar
  79. 79.
    Szabo C, Pacher P, Swanson RA (2006) Novel modulators of poly(ADP-ribose) polymerase. Trends Pharmacol Sci 27:626–630. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  80. 80.
    Ethier C, Labelle Y, Poirier GG (2007) PARP-1-induced cell death through inhibition of the MEK/ERK pathway in MNNG-treated HeLa cells. Apoptosis 12:2037–2049. doi: 10.1007/s10495-007-0127-z PubMedCrossRefGoogle Scholar
  81. 81.
    Kauppinen TM, Chan WY, Won Suh S et al (2006) Direct phosphorylation and regulation of poly(ADP-ribose) polymerase-1 by extracellular signal-regulated kinases. Proc Natl Acad Sci USA 103:7136–7141. doi: 10.1073/pnas.0508606103 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • V. Spina-Purrello
    • 1
  • D. Patti
    • 1
  • A. M. Giuffrida-Stella
    • 1
  • V. G. Nicoletti
    • 1
  1. 1.Department of Chemical Sciences, Section of Biochemistry and Molecular Biology, Medical FacultyUniversity of CataniaCataniaItaly

Personalised recommendations