Skip to main content

Advertisement

Log in

A Comparative Study of β-Amyloid Peptides Aβ1-42 and Aβ25-35 Toxicity in Organotypic Hippocampal Slice Cultures

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Accumulation of the neurotoxic amyloid β-peptide (Aβ) in the brain is a hallmark of Alzheimer’s disease (AD). Several synthetic Aβ peptides have been used to study the mechanisms of toxicity. Here, we sought to establish comparability between two commonly used Aβ peptides Aβ1-42 and Aβ25-35 on an in vitro model of Aβ toxicity. For this purpose we used organotypic slice cultures of rat hippocampus and observed that both Aβ peptides caused similar toxic effects regarding to propidium iodide uptake and caspase-3 activation. In addition, we also did not observe any effect of both peptides on Akt and PTEN phosphorylation; otherwise the phosphorylation of GSK-3β was increased. Although further studies are necessary for understanding mechanisms underlying Aβ peptide toxicity, our results provide strong evidence that Aβ1-42 and the Aβ25-35 peptides induce neural injury in a similar pattern and that Aβ25-35 is a convenient tool for the investigation of neurotoxic mechanisms involved in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Mol Cell Biol 8:101–112

    Article  CAS  Google Scholar 

  2. Parihar MS, Hemnani T (2004) Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci 11:456–467

    Article  PubMed  CAS  Google Scholar 

  3. Mattson MP, Chan SL (2003) Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium 34:385–397

    Article  PubMed  CAS  Google Scholar 

  4. Selkoe DJ, Schenk D (2003) Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Ann Rev Pharm Toxic 43:545–584

    Article  CAS  Google Scholar 

  5. Selkoe DJ (2000) Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid β-protein. Ann NY Acad Sci 924:17–25

    PubMed  CAS  Google Scholar 

  6. Haass C, Schlossmancher MG, Hung AY et al (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325

    Article  PubMed  CAS  Google Scholar 

  7. Shoji M, Golde TE, Ghiso J et al (1992) Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 258:126–129

    Article  PubMed  CAS  Google Scholar 

  8. Selkoe DJ (1996) Amyloid beta-protein and genetics of Alzheimer’s disease. Biol Chem 271:18295–18298

    CAS  Google Scholar 

  9. Loo DT, Copani AC, Pike CJ et al (1993) Apoptosis is induced by β-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci 90:7951–7955

    Article  PubMed  CAS  Google Scholar 

  10. Selkoe DJ (1999) Translating cell biology into therapeutics advances in Alzheimer’s disease. Nat Alerts 399:A23–A31

    CAS  Google Scholar 

  11. Bateman DA, Chakrabartty A (2004) Interactions of Alzheimer amyloid peptides with cultured cells and brain tissue, and their biological consequences. Biopolymers (Peptide Science) 76:4–14

    Article  CAS  Google Scholar 

  12. Yankner BA, Dawes LR, Fisher S et al (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 245:417–420

    Article  PubMed  CAS  Google Scholar 

  13. Jang J-H, Surh Y-J (2005) β-Amyloid-induced apoptosis is associated with cyclooxygenase-2 up-regulation via the mitogen-activated protein kinase—NFκB signaling pathway. Free Rad Biol Med 38:1604–1613

    Article  PubMed  CAS  Google Scholar 

  14. Abe K, Saito H (2000) Amyloid β neurotoxicity not mediated the mitogen-activated protein kinase cascade in cultured rat hippocampal and cortical neurons. Neurosci Lett 292:1–4

    Article  PubMed  CAS  Google Scholar 

  15. Kubo T, Nishimura S, Kumagae Y et al (2002) In vivo conversion of Racemized_-Amyloid([D-Ser26]A_1 40) to truncated and toxic fragments ([D-Ser 26]A_25–35/40) and fragment presence in the brains of Alzheimer’s patients. J Neurosci Res 70:474–483

    Article  PubMed  CAS  Google Scholar 

  16. Clementi ME, Marini S, Coletta M et al (2005) Aβ(31-35) and Aβ(25-35) fragments of amyloid beta-protein induce cellular death through apoptotic signals: role of the redox state of methionine-35. FEBS Lett 579:2913–2918

    Article  PubMed  CAS  Google Scholar 

  17. Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J et al (1995) Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J Neurochem 64:253–265

    PubMed  CAS  Google Scholar 

  18. Misiti F, Sampaolese B, Pezzotti M et al (2005) Aβ(31-35) peptide induce apoptosis in PC 12 cells: contrast with Aβ(25-35) peptide and examination of underlying mechanisms. Neurochem Int 46:575–583

    Article  PubMed  CAS  Google Scholar 

  19. Kosuge Y, Sakikubo T, Ishige K et al (2006) Comparative study of endoplasmatic reticulum stress-induced neuronal death in rat cultured hippocampal and cerebellar granule neurons. Neurochem Int 49:285–293

    Article  PubMed  CAS  Google Scholar 

  20. Nassif M, Hoppe J, Santin K et al (2007) β-Amyloid peptide toxicity in organotypic hippocampal slice culture involves Akt/PKB, GSK-3β, and PTEN. Neurochem Int 50:229–235

    Article  PubMed  CAS  Google Scholar 

  21. Cotman CW, Su JH (1996) Mechanisms of neuronal death in Alzheimer’s disease. Brain Pathol 6:493–506

    Article  PubMed  CAS  Google Scholar 

  22. Gunn-Moore FJ, Tavaré JM (1998) Apoptosis of cerebellar granule cells induced by serum withdrawal, glutamate or β-amyloid, is independent of Jun kinase or p38 mitogen activated protein kinase activation. Neurosci Lett 250:53–56

    Article  PubMed  CAS  Google Scholar 

  23. Stein-Behrens B, Adams K, Yeh M et al (1992) Failure of beta-amyloid protein fragment 25-35 to cause hippocampal damage in the rat. Neurobiol Aging 13:577–579

    Article  PubMed  CAS  Google Scholar 

  24. Malouf AT (1992) Effect of beta amyloid peptides on neurons in hippocampal slice cultures. Neurobiol Aging 13:543–551

    Article  PubMed  CAS  Google Scholar 

  25. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Method 37:173–182

    Article  CAS  Google Scholar 

  26. Bruce AJ, Malfroy B, Baudry M (1996) β-Amyloid toxicity in organotypic hippocampal cultures: protection by EUK-8, a syntetic catalytic free radical scavenger. Proc Natl Acad Sci 93:2312–2316

    Article  PubMed  CAS  Google Scholar 

  27. Holopainen IE (2005) Organotypic hippocampal slice cultures: a model system to study basic cellular and molecular mechanisms of neuronal cell death, neuroprotection, and synaptic plasticity. Neurochem Res 30:1521–1528

    Article  PubMed  CAS  Google Scholar 

  28. Abdel-Hamid KM, Tymianski M (1997) Mechanisms and effects of intra-cellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglicemia or to excitotoxins. J Neurosci 17:3538–3553

    PubMed  CAS  Google Scholar 

  29. Pringle AK, Angunawela R, Wilde GJC et al (1997) Induction of 72 KDa heat-shock protein following sub-lethal oxygen deprivation in organotypic hippocampal slice cultures. Neuropathol Appl Neurobiol 23:289–298

    Article  PubMed  CAS  Google Scholar 

  30. Valentim LM, Rodnight R, Geyer AB et al (2003) Changes in heat shock protein 27 phosphorylation and immunocontent in response to preconditioning to oxygen and glucose deprivation in organotypic hippocampal cultures. Neuroscience 118:379–386

    Article  PubMed  CAS  Google Scholar 

  31. Cimarosti H, Zamin LL, Frozza R et al (2005) Estradiol protects against oxygen and glucose deprivation in rat hippocampal organotypic cultures and activates Akt and inactivates GSK-3β. Neurochem Res 30:191–199

    Article  PubMed  CAS  Google Scholar 

  32. Horn AP, Gerhardt D, Geyer AB et al (2005) Cellular death in hippocampus in response to PI-3K pathway inhibition and oxygen and glucose deprivation. Neurochem Res 30:355–361

    Article  PubMed  CAS  Google Scholar 

  33. Ito Y, Ito M, Takagi N et al (2003) Neurotoxicity induced by amyloid beta-peptides and ibotenic acid in organotypic hippocampal cultures: protection by S-allyl-l-cystine, a garlic compound. Brain Res 985:98–107

    Article  PubMed  CAS  Google Scholar 

  34. Chong YH, Shin YJ, Lee EO et al (2006) ERK1/2 activation mediates Aβ oligomer-induced neurotoxicity via caspase-3 activation and tau cleavage in rat organotypic hippocampal slice cultures. J Biol Chem 281:20315–20325

    Article  PubMed  CAS  Google Scholar 

  35. Han Y-S, Zheng W-H, Bastianetto S et al (2004) Neuroprotective effects of resveratrol against β-amyloid-induced neurotoxicity in rat hippocampal neurons: involvement of protein kinase C. Br J Pharm 141:997–1005

    Article  CAS  Google Scholar 

  36. Noraberg J, Kristensen BW, Zimmer J (1999) Markers for neuronal degeneration in organotypic slice cultures. Brain Res Prot 3:278–290

    Article  CAS  Google Scholar 

  37. Macklis JD, Madison RD (1990) Progressive incorporation of propidium iodide in cultured mouse neurons correlates with declining electrophysiological status: a fluorescence scale of membrane integrity. J Neurosci Method 31:43–46

    Article  CAS  Google Scholar 

  38. Peterson GL (1983) Determination of total protein. Meth Enzym 91:95–119

    Article  PubMed  CAS  Google Scholar 

  39. Baskys A, Adamchik Y (2001) Neuroprotective effects of extracellular glutamate are absent in organotypic cultures treated with the amyloid peptide Aβ(25-35). Brain Res 13:188–194

    Article  Google Scholar 

  40. Lu XH, Bradley RJ, Dwyer DS (2004) Olanzapine produces trophic effects in vitro and stimulates phosphorylation of Akt/PKB, ERK1/2, and the mitogen-activated protein kinase p38. Brain 1011:58–68

    Article  CAS  Google Scholar 

  41. Ribe EM, Perez M, Puig B et al (2004) Signal transduction during amyloid-beta-peptide neurotoxicity: role in Alzheimer disease. Brain Res Rev 47:275–289

    Article  CAS  Google Scholar 

  42. Smith WW, Gorospe M, Kusiak JW (2006) Signaling mechanisms underlying a beta toxicity: potential therapeutic targets for Alzheimer’s disease. CNS Neurol Disord Drug Targets 5:355–361

    Article  PubMed  CAS  Google Scholar 

  43. Hsia AY, Masliah E, McConlogue L et al (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA 96:3228–3233

    Article  PubMed  CAS  Google Scholar 

  44. Klein WL, Krafft GA, Finch CE (2001) Targeting small Aβ oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24:219–224

    Article  PubMed  CAS  Google Scholar 

  45. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-β in Alzheimer’s disease. Nat Neurosci 8:499–509

    Article  CAS  Google Scholar 

  46. Selkoe DJ (2008) Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav Brain Res. doi:10.1016/j.bbr.2008.02.016

  47. Walsh DM, Klyubin I, Fadeeva JV et al (2002) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    Article  PubMed  CAS  Google Scholar 

  48. Sáez-Valero J, de Ceballos M, Small DH et al (2002) Changes in molecular isoform distribuition of acetylcholinesterase in rat cortex and cerebrospinal fluid after intracerebroventricular administration of amyloid β-peptide. Neurosci Lett 325:199–202

    Article  PubMed  Google Scholar 

  49. Stepanichev MY, Zdobnova IM, Zarubenko II et al (2006) Studies of the effects of central administration of β-amyloid peptide (25–35): phatomorphological changes in the hippocampal and impairment of spatial memory. Neurosci Behav Physiol 36:101–106

    Article  PubMed  CAS  Google Scholar 

  50. Johansson S, Radesäter A-C, Cowburn RF et al (2006) Modelling of amyloid β-peptide induced lesions using roller-drum incubation of hippocampal slice cultures from neonatal rats. Exp Brain Res 168:11–24

    Article  PubMed  CAS  Google Scholar 

  51. Imai T, Kosuge Y, Ishige K et al (2007) Amyloid β-protein potentiates Tunicamycin-induced neuronal death in organotypic hippocampal slice cultures. Neuroscience 147:639–651

    Article  PubMed  CAS  Google Scholar 

  52. Ishige K, Takagi N, Imai T et al (2007) Role of caspase-12 in amyloid β-peptide-induced toxicity in organotypic hippocampal slices cultured for long periods. J Pharmacol Sci 104:46–55

    Article  PubMed  CAS  Google Scholar 

  53. Song X, Wu B, Takata T et al (2005) Neuroprotective effect of d-fructose-1,6-bisphosphate against β-amyloid induced neurotoxicity in rat hippocampal organotypic slice culture: involvement of PLC and MEK/ERK signaling pathways. Kobe J Med Sci 51:73–83

    PubMed  CAS  Google Scholar 

  54. Suh EC, Jung YJ, Kim YA et al (2008) Aβ25-35 induces presynaptic changes in organotypic hippocampal slice cultures. Neurotoxicology. doi:101016/j.neuro.2008.04.001

  55. Lee JN, Zipfel GJ, Choi DW (1999) The changing landscape of ischemic brain injury mechanisms. Nature 399:A7–A14

    PubMed  CAS  Google Scholar 

  56. Papucci L, Formigli L, Schiavone N et al (2004) Apoptosis shifts to necrosis via intermediate types of cell death by a mechanism depending on c-myc and bcl-2 expression. Cell Tissue Res 316:197–209

    Article  PubMed  CAS  Google Scholar 

  57. Troy CM, Rabacchi SA, Friedman WJ et al (2000) Caspase-2 mediates neuronal cell death induced by β-amyloid. J Neuroscience 20:1386–1392

    CAS  Google Scholar 

  58. Stadelmann C, Deckwerth TL, Srinivasan A et al (1999) Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease. Evidence for apoptotic cell death. Am J Pathol 155:1459–1466

    PubMed  CAS  Google Scholar 

  59. Jin Y, Yan E, Fan Y et al (2005) Sodium ferulate prevents amyloid-beta-induced neurotoxicity through suppression of p38 MAPK and upregulation of ERK-1/2 and Akt/protein kinase B in rat hippocampus. Acta Pharm Sin 8:943–951

    Article  CAS  Google Scholar 

  60. Rissman RA, Poon WW, Blurton-Jones M et al (2004) Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 14:121–130

    Google Scholar 

  61. Fasulo L, Ugolini G, Cattaneo A (2005) Apoptotic effect of caspase-3 cleaved tau in hippocampal neurons and its potentiation by tau FTDP-mutaion N279K. J Alzheimers Dis 7:3–13

    PubMed  CAS  Google Scholar 

  62. Perry G, Roder H, Nunomura A et al (1999) Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal phosphorylation. Neuroreport 10:2411–2415

    Article  PubMed  CAS  Google Scholar 

  63. Plattner F, Angelo M, Giese KP (2006) The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J Biol Chem 281:25457–25465

    Article  PubMed  CAS  Google Scholar 

  64. Li M, Wang X, Meintzer MK et al (2000) Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3beta. Mol Cell Biol 20:9356–9363

    Article  PubMed  CAS  Google Scholar 

  65. Kerr F, Rickle A, Nayeem N et al (2006) PTEN, a negative regulator of PI3 kinase signalling, alters tau phosphorylation in cells by mechanisms independent of GSK-3. FEBS Lett 580:3121–3128

    Article  PubMed  CAS  Google Scholar 

  66. Cook D, Fry MJ, Hughes K et al (1996) Wingless inactivates glycogen syntase kinase-3 via an intracellular signaling pathway which involves a protein kinase C. EMBO J 15:4526–4536

    PubMed  CAS  Google Scholar 

  67. Inestrosa NC, De Ferrari GV, Garrido JL et al (2002) Wnt signaling involvement in beta-amyloid-dependent neurodegeneration. Neurochem Int 41:341–344

    Article  PubMed  CAS  Google Scholar 

  68. Hüll M, Muksch B, Akundi RS et al (2006) Amyloid beta peptide (25-35) activates protein kinase C leading to cyclooxygenase-2 induction and prostaglandin E2 release in primary midbrain astrocytes. Neurochem Int 48:663–672

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and Pró-Reitoria de Pesquisa da Universidade Federal do Rio Grande do Sul (PROPESQ/UFRGS). The authors thank to Alessandra Heizelmann for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christianne Gazzana Salbego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frozza, R.L., Horn, A.P., Hoppe, J.B. et al. A Comparative Study of β-Amyloid Peptides Aβ1-42 and Aβ25-35 Toxicity in Organotypic Hippocampal Slice Cultures. Neurochem Res 34, 295–303 (2009). https://doi.org/10.1007/s11064-008-9776-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9776-8

Keywords

Navigation