Neurochemical Research

, Volume 34, Issue 2, pp 295–303 | Cite as

A Comparative Study of β-Amyloid Peptides Aβ1-42 and Aβ25-35 Toxicity in Organotypic Hippocampal Slice Cultures

  • Rudimar Luiz Frozza
  • Ana Paula Horn
  • Juliana Bender Hoppe
  • Fabrício Simão
  • Daniéli Gerhardt
  • Ricardo Argenta Comiran
  • Christianne Gazzana Salbego
Original Paper


Accumulation of the neurotoxic amyloid β-peptide (Aβ) in the brain is a hallmark of Alzheimer’s disease (AD). Several synthetic Aβ peptides have been used to study the mechanisms of toxicity. Here, we sought to establish comparability between two commonly used Aβ peptides Aβ1-42 and Aβ25-35 on an in vitro model of Aβ toxicity. For this purpose we used organotypic slice cultures of rat hippocampus and observed that both Aβ peptides caused similar toxic effects regarding to propidium iodide uptake and caspase-3 activation. In addition, we also did not observe any effect of both peptides on Akt and PTEN phosphorylation; otherwise the phosphorylation of GSK-3β was increased. Although further studies are necessary for understanding mechanisms underlying Aβ peptide toxicity, our results provide strong evidence that Aβ1-42 and the Aβ25-35 peptides induce neural injury in a similar pattern and that Aβ25-35 is a convenient tool for the investigation of neurotoxic mechanisms involved in AD.


Alzheimer’s disease Amyloid β-peptide Organotypic culture Caspase-3 



This work was supported the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and Pró-Reitoria de Pesquisa da Universidade Federal do Rio Grande do Sul (PROPESQ/UFRGS). The authors thank to Alessandra Heizelmann for excellent technical assistance.


  1. 1.
    Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Mol Cell Biol 8:101–112CrossRefGoogle Scholar
  2. 2.
    Parihar MS, Hemnani T (2004) Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci 11:456–467PubMedCrossRefGoogle Scholar
  3. 3.
    Mattson MP, Chan SL (2003) Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium 34:385–397PubMedCrossRefGoogle Scholar
  4. 4.
    Selkoe DJ, Schenk D (2003) Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Ann Rev Pharm Toxic 43:545–584CrossRefGoogle Scholar
  5. 5.
    Selkoe DJ (2000) Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid β-protein. Ann NY Acad Sci 924:17–25PubMedGoogle Scholar
  6. 6.
    Haass C, Schlossmancher MG, Hung AY et al (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325PubMedCrossRefGoogle Scholar
  7. 7.
    Shoji M, Golde TE, Ghiso J et al (1992) Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 258:126–129PubMedCrossRefGoogle Scholar
  8. 8.
    Selkoe DJ (1996) Amyloid beta-protein and genetics of Alzheimer’s disease. Biol Chem 271:18295–18298Google Scholar
  9. 9.
    Loo DT, Copani AC, Pike CJ et al (1993) Apoptosis is induced by β-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci 90:7951–7955PubMedCrossRefGoogle Scholar
  10. 10.
    Selkoe DJ (1999) Translating cell biology into therapeutics advances in Alzheimer’s disease. Nat Alerts 399:A23–A31Google Scholar
  11. 11.
    Bateman DA, Chakrabartty A (2004) Interactions of Alzheimer amyloid peptides with cultured cells and brain tissue, and their biological consequences. Biopolymers (Peptide Science) 76:4–14CrossRefGoogle Scholar
  12. 12.
    Yankner BA, Dawes LR, Fisher S et al (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 245:417–420PubMedCrossRefGoogle Scholar
  13. 13.
    Jang J-H, Surh Y-J (2005) β-Amyloid-induced apoptosis is associated with cyclooxygenase-2 up-regulation via the mitogen-activated protein kinase—NFκB signaling pathway. Free Rad Biol Med 38:1604–1613PubMedCrossRefGoogle Scholar
  14. 14.
    Abe K, Saito H (2000) Amyloid β neurotoxicity not mediated the mitogen-activated protein kinase cascade in cultured rat hippocampal and cortical neurons. Neurosci Lett 292:1–4PubMedCrossRefGoogle Scholar
  15. 15.
    Kubo T, Nishimura S, Kumagae Y et al (2002) In vivo conversion of Racemized_-Amyloid([D-Ser26]A_1 40) to truncated and toxic fragments ([D-Ser 26]A_25–35/40) and fragment presence in the brains of Alzheimer’s patients. J Neurosci Res 70:474–483PubMedCrossRefGoogle Scholar
  16. 16.
    Clementi ME, Marini S, Coletta M et al (2005) Aβ(31-35) and Aβ(25-35) fragments of amyloid beta-protein induce cellular death through apoptotic signals: role of the redox state of methionine-35. FEBS Lett 579:2913–2918PubMedCrossRefGoogle Scholar
  17. 17.
    Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J et al (1995) Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J Neurochem 64:253–265PubMedGoogle Scholar
  18. 18.
    Misiti F, Sampaolese B, Pezzotti M et al (2005) Aβ(31-35) peptide induce apoptosis in PC 12 cells: contrast with Aβ(25-35) peptide and examination of underlying mechanisms. Neurochem Int 46:575–583PubMedCrossRefGoogle Scholar
  19. 19.
    Kosuge Y, Sakikubo T, Ishige K et al (2006) Comparative study of endoplasmatic reticulum stress-induced neuronal death in rat cultured hippocampal and cerebellar granule neurons. Neurochem Int 49:285–293PubMedCrossRefGoogle Scholar
  20. 20.
    Nassif M, Hoppe J, Santin K et al (2007) β-Amyloid peptide toxicity in organotypic hippocampal slice culture involves Akt/PKB, GSK-3β, and PTEN. Neurochem Int 50:229–235PubMedCrossRefGoogle Scholar
  21. 21.
    Cotman CW, Su JH (1996) Mechanisms of neuronal death in Alzheimer’s disease. Brain Pathol 6:493–506PubMedCrossRefGoogle Scholar
  22. 22.
    Gunn-Moore FJ, Tavaré JM (1998) Apoptosis of cerebellar granule cells induced by serum withdrawal, glutamate or β-amyloid, is independent of Jun kinase or p38 mitogen activated protein kinase activation. Neurosci Lett 250:53–56PubMedCrossRefGoogle Scholar
  23. 23.
    Stein-Behrens B, Adams K, Yeh M et al (1992) Failure of beta-amyloid protein fragment 25-35 to cause hippocampal damage in the rat. Neurobiol Aging 13:577–579PubMedCrossRefGoogle Scholar
  24. 24.
    Malouf AT (1992) Effect of beta amyloid peptides on neurons in hippocampal slice cultures. Neurobiol Aging 13:543–551PubMedCrossRefGoogle Scholar
  25. 25.
    Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Method 37:173–182CrossRefGoogle Scholar
  26. 26.
    Bruce AJ, Malfroy B, Baudry M (1996) β-Amyloid toxicity in organotypic hippocampal cultures: protection by EUK-8, a syntetic catalytic free radical scavenger. Proc Natl Acad Sci 93:2312–2316PubMedCrossRefGoogle Scholar
  27. 27.
    Holopainen IE (2005) Organotypic hippocampal slice cultures: a model system to study basic cellular and molecular mechanisms of neuronal cell death, neuroprotection, and synaptic plasticity. Neurochem Res 30:1521–1528PubMedCrossRefGoogle Scholar
  28. 28.
    Abdel-Hamid KM, Tymianski M (1997) Mechanisms and effects of intra-cellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglicemia or to excitotoxins. J Neurosci 17:3538–3553PubMedGoogle Scholar
  29. 29.
    Pringle AK, Angunawela R, Wilde GJC et al (1997) Induction of 72 KDa heat-shock protein following sub-lethal oxygen deprivation in organotypic hippocampal slice cultures. Neuropathol Appl Neurobiol 23:289–298PubMedCrossRefGoogle Scholar
  30. 30.
    Valentim LM, Rodnight R, Geyer AB et al (2003) Changes in heat shock protein 27 phosphorylation and immunocontent in response to preconditioning to oxygen and glucose deprivation in organotypic hippocampal cultures. Neuroscience 118:379–386PubMedCrossRefGoogle Scholar
  31. 31.
    Cimarosti H, Zamin LL, Frozza R et al (2005) Estradiol protects against oxygen and glucose deprivation in rat hippocampal organotypic cultures and activates Akt and inactivates GSK-3β. Neurochem Res 30:191–199PubMedCrossRefGoogle Scholar
  32. 32.
    Horn AP, Gerhardt D, Geyer AB et al (2005) Cellular death in hippocampus in response to PI-3K pathway inhibition and oxygen and glucose deprivation. Neurochem Res 30:355–361PubMedCrossRefGoogle Scholar
  33. 33.
    Ito Y, Ito M, Takagi N et al (2003) Neurotoxicity induced by amyloid beta-peptides and ibotenic acid in organotypic hippocampal cultures: protection by S-allyl-l-cystine, a garlic compound. Brain Res 985:98–107PubMedCrossRefGoogle Scholar
  34. 34.
    Chong YH, Shin YJ, Lee EO et al (2006) ERK1/2 activation mediates Aβ oligomer-induced neurotoxicity via caspase-3 activation and tau cleavage in rat organotypic hippocampal slice cultures. J Biol Chem 281:20315–20325PubMedCrossRefGoogle Scholar
  35. 35.
    Han Y-S, Zheng W-H, Bastianetto S et al (2004) Neuroprotective effects of resveratrol against β-amyloid-induced neurotoxicity in rat hippocampal neurons: involvement of protein kinase C. Br J Pharm 141:997–1005CrossRefGoogle Scholar
  36. 36.
    Noraberg J, Kristensen BW, Zimmer J (1999) Markers for neuronal degeneration in organotypic slice cultures. Brain Res Prot 3:278–290CrossRefGoogle Scholar
  37. 37.
    Macklis JD, Madison RD (1990) Progressive incorporation of propidium iodide in cultured mouse neurons correlates with declining electrophysiological status: a fluorescence scale of membrane integrity. J Neurosci Method 31:43–46CrossRefGoogle Scholar
  38. 38.
    Peterson GL (1983) Determination of total protein. Meth Enzym 91:95–119PubMedCrossRefGoogle Scholar
  39. 39.
    Baskys A, Adamchik Y (2001) Neuroprotective effects of extracellular glutamate are absent in organotypic cultures treated with the amyloid peptide Aβ(25-35). Brain Res 13:188–194CrossRefGoogle Scholar
  40. 40.
    Lu XH, Bradley RJ, Dwyer DS (2004) Olanzapine produces trophic effects in vitro and stimulates phosphorylation of Akt/PKB, ERK1/2, and the mitogen-activated protein kinase p38. Brain 1011:58–68CrossRefGoogle Scholar
  41. 41.
    Ribe EM, Perez M, Puig B et al (2004) Signal transduction during amyloid-beta-peptide neurotoxicity: role in Alzheimer disease. Brain Res Rev 47:275–289CrossRefGoogle Scholar
  42. 42.
    Smith WW, Gorospe M, Kusiak JW (2006) Signaling mechanisms underlying a beta toxicity: potential therapeutic targets for Alzheimer’s disease. CNS Neurol Disord Drug Targets 5:355–361PubMedCrossRefGoogle Scholar
  43. 43.
    Hsia AY, Masliah E, McConlogue L et al (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA 96:3228–3233PubMedCrossRefGoogle Scholar
  44. 44.
    Klein WL, Krafft GA, Finch CE (2001) Targeting small Aβ oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24:219–224PubMedCrossRefGoogle Scholar
  45. 45.
    LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-β in Alzheimer’s disease. Nat Neurosci 8:499–509CrossRefGoogle Scholar
  46. 46.
    Selkoe DJ (2008) Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav Brain Res. doi: 10.1016/j.bbr.2008.02.016
  47. 47.
    Walsh DM, Klyubin I, Fadeeva JV et al (2002) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539PubMedCrossRefGoogle Scholar
  48. 48.
    Sáez-Valero J, de Ceballos M, Small DH et al (2002) Changes in molecular isoform distribuition of acetylcholinesterase in rat cortex and cerebrospinal fluid after intracerebroventricular administration of amyloid β-peptide. Neurosci Lett 325:199–202PubMedCrossRefGoogle Scholar
  49. 49.
    Stepanichev MY, Zdobnova IM, Zarubenko II et al (2006) Studies of the effects of central administration of β-amyloid peptide (25–35): phatomorphological changes in the hippocampal and impairment of spatial memory. Neurosci Behav Physiol 36:101–106PubMedCrossRefGoogle Scholar
  50. 50.
    Johansson S, Radesäter A-C, Cowburn RF et al (2006) Modelling of amyloid β-peptide induced lesions using roller-drum incubation of hippocampal slice cultures from neonatal rats. Exp Brain Res 168:11–24PubMedCrossRefGoogle Scholar
  51. 51.
    Imai T, Kosuge Y, Ishige K et al (2007) Amyloid β-protein potentiates Tunicamycin-induced neuronal death in organotypic hippocampal slice cultures. Neuroscience 147:639–651PubMedCrossRefGoogle Scholar
  52. 52.
    Ishige K, Takagi N, Imai T et al (2007) Role of caspase-12 in amyloid β-peptide-induced toxicity in organotypic hippocampal slices cultured for long periods. J Pharmacol Sci 104:46–55PubMedCrossRefGoogle Scholar
  53. 53.
    Song X, Wu B, Takata T et al (2005) Neuroprotective effect of d-fructose-1,6-bisphosphate against β-amyloid induced neurotoxicity in rat hippocampal organotypic slice culture: involvement of PLC and MEK/ERK signaling pathways. Kobe J Med Sci 51:73–83PubMedGoogle Scholar
  54. 54.
    Suh EC, Jung YJ, Kim YA et al (2008) Aβ25-35 induces presynaptic changes in organotypic hippocampal slice cultures. Neurotoxicology. doi: 101016/j.neuro.2008.04.001
  55. 55.
    Lee JN, Zipfel GJ, Choi DW (1999) The changing landscape of ischemic brain injury mechanisms. Nature 399:A7–A14PubMedGoogle Scholar
  56. 56.
    Papucci L, Formigli L, Schiavone N et al (2004) Apoptosis shifts to necrosis via intermediate types of cell death by a mechanism depending on c-myc and bcl-2 expression. Cell Tissue Res 316:197–209PubMedCrossRefGoogle Scholar
  57. 57.
    Troy CM, Rabacchi SA, Friedman WJ et al (2000) Caspase-2 mediates neuronal cell death induced by β-amyloid. J Neuroscience 20:1386–1392Google Scholar
  58. 58.
    Stadelmann C, Deckwerth TL, Srinivasan A et al (1999) Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease. Evidence for apoptotic cell death. Am J Pathol 155:1459–1466PubMedGoogle Scholar
  59. 59.
    Jin Y, Yan E, Fan Y et al (2005) Sodium ferulate prevents amyloid-beta-induced neurotoxicity through suppression of p38 MAPK and upregulation of ERK-1/2 and Akt/protein kinase B in rat hippocampus. Acta Pharm Sin 8:943–951CrossRefGoogle Scholar
  60. 60.
    Rissman RA, Poon WW, Blurton-Jones M et al (2004) Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 14:121–130Google Scholar
  61. 61.
    Fasulo L, Ugolini G, Cattaneo A (2005) Apoptotic effect of caspase-3 cleaved tau in hippocampal neurons and its potentiation by tau FTDP-mutaion N279K. J Alzheimers Dis 7:3–13PubMedGoogle Scholar
  62. 62.
    Perry G, Roder H, Nunomura A et al (1999) Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal phosphorylation. Neuroreport 10:2411–2415PubMedCrossRefGoogle Scholar
  63. 63.
    Plattner F, Angelo M, Giese KP (2006) The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J Biol Chem 281:25457–25465PubMedCrossRefGoogle Scholar
  64. 64.
    Li M, Wang X, Meintzer MK et al (2000) Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3beta. Mol Cell Biol 20:9356–9363PubMedCrossRefGoogle Scholar
  65. 65.
    Kerr F, Rickle A, Nayeem N et al (2006) PTEN, a negative regulator of PI3 kinase signalling, alters tau phosphorylation in cells by mechanisms independent of GSK-3. FEBS Lett 580:3121–3128PubMedCrossRefGoogle Scholar
  66. 66.
    Cook D, Fry MJ, Hughes K et al (1996) Wingless inactivates glycogen syntase kinase-3 via an intracellular signaling pathway which involves a protein kinase C. EMBO J 15:4526–4536PubMedGoogle Scholar
  67. 67.
    Inestrosa NC, De Ferrari GV, Garrido JL et al (2002) Wnt signaling involvement in beta-amyloid-dependent neurodegeneration. Neurochem Int 41:341–344PubMedCrossRefGoogle Scholar
  68. 68.
    Hüll M, Muksch B, Akundi RS et al (2006) Amyloid beta peptide (25-35) activates protein kinase C leading to cyclooxygenase-2 induction and prostaglandin E2 release in primary midbrain astrocytes. Neurochem Int 48:663–672PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Rudimar Luiz Frozza
    • 1
  • Ana Paula Horn
    • 1
  • Juliana Bender Hoppe
    • 1
  • Fabrício Simão
    • 1
  • Daniéli Gerhardt
    • 1
  • Ricardo Argenta Comiran
    • 1
  • Christianne Gazzana Salbego
    • 1
  1. 1.Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul - UFRGSPorto AlegreBrazil

Personalised recommendations