Skip to main content

Advertisement

Log in

Estrogen Effects on High-Affinity Choline Uptake in Primary Cultures of Rat Basal Forebrain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Basal forebrain cholinergic neurons (BFCNs) degenerate in aging and Alzheimer’s disease. It has been proposed that estrogen can affect the survival and function of BFCNs. This study characterized primary rat BFCN cultures and investigated the effect of estrogen on high-affinity choline uptake (HACU). BFCNs were identified by immunoreactivity to the vesicular acetylcholine transporter (VAChT) and represented up to 5% of total cells. HACU was measured in living BFCN cultures and differentiated from low-affinity choline uptake by hemicholinium-3 (HC-3) inhibition. A HC-3 concentration curve showed that 0.3 μM HC-3, but not higher concentrations that inhibit LACU, could distinguish the two transport activities. 17-β-Estradiol treatment increased HACU in some culture preparations that contained non-neuronal cells. Elimination of dividing cells using antimitotic treatments resulted in a lack of estrogen effects on HACU. These results suggest that estrogen may have indirect effects on BFCNs that are mediated through non-neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

BFCNs:

Basal forebrain cholinergic neurons

ChAT:

Choline acetyltransferase

HACU:

High-affinity choline uptake

HC-3:

Hemicholinium-3

LACU:

Low-affinity choline uptake

NGF:

Nerve growth factor

VAChT:

Vesicular acetylcholine transporter

VAChT-IR:

VAChT-immunoreactive

References

  1. Gustilo MC, Markowska AL, Breckler SJ et al (1999) Evidence that nerve growth factor influences recent memory through structural changes in septohippocampal cholinergic neurons. J Comp Neurol 405:491–507

    Article  PubMed  CAS  Google Scholar 

  2. Baxter MG, Chiba AA (1999) Cognitive functions of the basal forebrain. Curr Opin Neurobiol 9:178–183

    Article  PubMed  CAS  Google Scholar 

  3. Bartus RT (2000) On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 163:495–529

    Article  PubMed  CAS  Google Scholar 

  4. Sofroniew MV, Cooper JD, Svendsen CN et al (1993) Atrophy but not death of adult septal cholinergic neurons after ablation of target capacity to produce mRNAs for NGF, BDNF, and NT3. J Neurosci 13:5263–5276

    PubMed  CAS  Google Scholar 

  5. Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190

    Article  PubMed  CAS  Google Scholar 

  6. Henderson VW (1997) Estrogen, cognition, and a woman’s risk of Alzheimer’s disease. Am J Med 103:11S–18S

    Article  PubMed  CAS  Google Scholar 

  7. Miettinen RA, Kalesnykas G, Koivisto EH (2002) Estimation of the total number of cholinergic neurons containing estrogen receptor-alpha in the rat basal forebrain. J Histochem Cytochem 50:891–902

    PubMed  CAS  Google Scholar 

  8. Toran-Allerand CD, Miranda RC, Bentham WD et al (1992) Estrogen receptors colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain. Proc Natl Acad Sci USA 89:4668–4672

    Article  PubMed  CAS  Google Scholar 

  9. Shughrue PJ, Scrimo PJ, Merchenthaler I (2000) Estrogen binding and estrogen receptor characterization (ERalpha and ERbeta) in the cholinergic neurons of the rat basal forebrain. Neuroscience 96(1):41–49

    Article  PubMed  CAS  Google Scholar 

  10. Kawas C, Resnick S, Morrison A et al (1997) A prospective study of estrogen replacement therapy and the risk of developing Alzheimer’s disease: the Baltimore Longitudinal Study of Aging. Neurology 48:1517–1521

    PubMed  CAS  Google Scholar 

  11. Gibbs RB (2000) Effects of gonadal hormone replacement on measures of basal forebrain cholinergic function. Neuroscience 101:931–938

    Article  PubMed  CAS  Google Scholar 

  12. Zandi PP, Carlson MC, Plassman BL et al (2002) Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County Study. JAMA 288:2123–2129

    Article  PubMed  CAS  Google Scholar 

  13. Waring SC, Rocca WA, Petersen RC et al (1999) Postmenopausal estrogen replacement therapy and risk of AD: a population-based study. Neurology 52:965–970

    PubMed  CAS  Google Scholar 

  14. Tang MX, Jacobs D, Stern Y et al (1996) Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 348:429–432

    Article  PubMed  CAS  Google Scholar 

  15. Yaffe K, Lui LY, Grady D et al (2000) Cognitive decline in women in relation to non-protein bound oestradiol concentrations. Lancet 356:708–712

    Article  PubMed  CAS  Google Scholar 

  16. Mulnard RA, Cotman CW, Kawas C et al (2000) Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial. Alzheimer’s Disease Cooperative Study. JAMA 283:1007–1015

    CAS  Google Scholar 

  17. Shumaker SA, Legault C, Kuller L et al (2004) Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s Health Initiative Memory Study. JAMA 291:2947–2958

    Article  PubMed  CAS  Google Scholar 

  18. Geerlings MI, Launer LJ, de Jong FH et al (2003) Endogenous estradiol and risk of dementia in women and men: the Rotterdam Study. Ann Neurol 53:607–615

    Article  PubMed  CAS  Google Scholar 

  19. Jope RS (1979) High affinity choline transport and acetylCoA production in brain and their roles in the regulation of acetylcholine synthesis. Brain Res 180:313–344

    PubMed  CAS  Google Scholar 

  20. Apparsundaram S, Ferguson SM, George AL Jr, Blakely RD (2000) Molecular cloning of a human, hemicholinium-3-sensitive choline transporter. Biochem Biophys Res Commun 276:862–867

    Article  PubMed  CAS  Google Scholar 

  21. Pongrac JL, Gibbs RB, Defranco DB (2004) Estrogen-mediated regulation of cholinergic expression in basal forebrain neurons requires extracellular-signal-regulated kinase activity. Neuroscience 124:809–816

    Article  PubMed  CAS  Google Scholar 

  22. Dominguez R, Jalali C, de Lacalle S (2004) Morphological effects of estrogen on cholinergic neurons in vitro involves activation of extracellular signal-regulated kinases. J Neurosci 24:982–990

    Article  PubMed  CAS  Google Scholar 

  23. Mudd LM, Torres J, Lopez TF, Montague J (1998) Effects of growth factors and estrogen on the development of septal cholinergic neurons from the rat. Brain Res Bull 45:137–142

    Article  PubMed  CAS  Google Scholar 

  24. Banker G, Goslin K (1998) Culturing nerve cells. The MIT Press, Cambridge

    Google Scholar 

  25. Auld DS, Day JC, Mennicken F, Quirion R (2000) Pharmacological characterization of endogenous acetylcholine release from primary septal cultures. J Pharmacol Exp Ther 292:692–697

    PubMed  CAS  Google Scholar 

  26. Gilmor ML, Nash NR, Roghani A et al (1996) Expression of the putative vesicular acetylcholine transporter in rat brain and localization in cholinergic synaptic vesicles. J Neurosci 16:2179–2190

    PubMed  CAS  Google Scholar 

  27. Arvidsson U, Riedl M, Elde R, Meister B (1997) Vesicular acetylcholine transporter (VAChT) protein: a novel and unique marker for cholinergic neurons in the central and peripheral nervous systems. J Comp Neurol 378:454–467

    Article  PubMed  CAS  Google Scholar 

  28. Lips KS, Pfeil U, Reiners K et al (2003) Expression of the high-affinity choline transporter CHT1 in rat and human arteries. J Histochem Cytochem 51:1645–1654

    PubMed  CAS  Google Scholar 

  29. Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 38:3751–3757

    PubMed  CAS  Google Scholar 

  30. Winkler J, Ramirez GA, Thal LJ, Waite JJ (2000) Nerve growth factor (NGF) augments cortical and hippocampal cholinergic functioning after p75NGF receptor-mediated deafferentation but impairs inhibitory avoidance and induces fear-related behaviors. J Neurosci 20:834–844

    PubMed  CAS  Google Scholar 

  31. Hansen MG Jr, Shen S, Wiemelt AP et al (1998) Cyclic AMP elevation is sufficient to promote the survival of spinal motor neurons in vitro. J Neurosci 18:7361–7371

    Google Scholar 

  32. Kumar S, Pena LA, de Vellis J (1993) CNS glial cells express neurotrophin receptors whose levels are regulated by NGF. Mol Brain Res 17:163–168

    Article  PubMed  CAS  Google Scholar 

  33. Hartikka J, Hefti F (1988) Development of septal cholinergic neurons in culture: plating density and glial cells modulate effects of NGF on survival, fiber growth, and expression of transmitter-specific enzymes. J Neurosci 8:2967–2985

    PubMed  CAS  Google Scholar 

  34. Auld DS, Mennicken F, Day JC, Quirion R (2001) Neurotrophins differentially enhance acetylcholine release, acetylcholine content and choline acetyltransferase activity in basal forebrain neurons. J Neurochem 77:253–262

    Article  PubMed  CAS  Google Scholar 

  35. Guyenet P, Lefresne P, Rossier J et al (1973) Inhibition by hemicholinium-3 of (14C) acetylcholine synthesis and (3H) choline high-affinity uptake in rat striatal synaptosomes. Mol Pharmacol 9:630–639

    PubMed  CAS  Google Scholar 

  36. Yamamura HI, Snyder SH (1972) Choline: high-affinity uptake by rat brain synaptosomes. Science 178:626–628

    Article  PubMed  CAS  Google Scholar 

  37. Kuhar MJ, Murrin LC (1978) Sodium-dependent, high affinity choline uptake. J Neurochem 30:15–21

    Article  PubMed  CAS  Google Scholar 

  38. Simon JR, Mittag TW, Kuhar JM (1975) Inhibition of synaptosomal uptake of choline by various choline analogs. Biochem Pharmacol 24:1139–1142

    Article  PubMed  CAS  Google Scholar 

  39. Schnitzer J, Franke WW, Schachner M (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol 90:435–447

    Article  PubMed  CAS  Google Scholar 

  40. Prothmann C, Wellard J, Berger J et al (2001) Primary cultures as a model for studying ependymal functions: glycogen metabolism in ependymal cells. Brain Res 920:74–83

    Article  PubMed  CAS  Google Scholar 

  41. Banizs B, Pike MM, Millican CL et al (2005) Dysfunctional cilia lead to altered ependymal and choroids plexus function, and result in the formation of hydrocephalus. Development 132:5329–5339

    Article  PubMed  CAS  Google Scholar 

  42. Weibel M, Pettmann B, Artault JC et al (1986) Primary culture of rat ependymal cells in serum-free defined medium. Brain Res 390:199–209

    Article  PubMed  CAS  Google Scholar 

  43. Muir JL (1997) Acetylcholine, aging, and Alzheimer’s disease. Pharmacol Biochem Behav 56:687–696

    Article  PubMed  CAS  Google Scholar 

  44. Perry EK, Johnson M, Kerwin JM et al (1992) Convergent cholinergic activities in aging and Alzheimer’s disease. Neurobiol Aging 13:393–400

    Article  PubMed  CAS  Google Scholar 

  45. Williams BJ, Bimonte-Nelson HA, Granholm-Bentley AC (2006) ERK-mediated NGF signaling in the rat septo-hippocampal pathway diminishes with age. Psychopharmacology (Berl) 188:605–618

    Article  CAS  Google Scholar 

  46. Gabor R, Nagle R, Johnson DA, Gibbs RB (2003) Estrogen enhances potassium-stimulated acetylcholine release in the rat hippocampus. Brain Res 962:244–247

    Article  PubMed  CAS  Google Scholar 

  47. Szego EM, Barabas K, Balog J et al (2006) Estrogen induces estrogen receptor alpha-dependent cAMP response element-binding protein phosphorylation via mitogen activated protein kinase pathway in basal forebrain cholinergic neurons in vivo. J Neurosci 26:4104–4110

    Article  PubMed  CAS  Google Scholar 

  48. Ferguson SM, Bazalakova M, Savchenko V et al (2004) Lethal impairment of cholinergic neurotransmission in hemicholinium-3-sensitive choline transporter knockout mice. Proc Natl Acad Sci USA 101:8762–8767

    Article  PubMed  CAS  Google Scholar 

  49. Gibbs RB (1997) Effects of estrogen on basal forebrain cholinergic neurons vary as a function of dose and duration of treatment. Brain Res 757:10–16

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH RO3 AG21735 (J.S.), the Laura W. Bush Institute for Women’s Health (J.S.), the Achievement Rewards for College Scientists scholarship foundation (K.M.B.), and the Merck/AFAR Summer Research Scholarship in Geriatric Pharmacology (C.H. and C.M.). We would like to thank Dr. Joachim Hartmann for his expertise and Dr. Jochen Klein for providing access to instruments and for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Stoll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, K.M., Hoelting, C., Martin, C.P. et al. Estrogen Effects on High-Affinity Choline Uptake in Primary Cultures of Rat Basal Forebrain. Neurochem Res 34, 205–214 (2009). https://doi.org/10.1007/s11064-008-9746-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9746-1

Keywords

Navigation