Skip to main content
Log in

Involvement of Spinal Somatostatin Receptor SST2A in Inflammation-Induced Thermal Hyperalgesia: Ultrastructural and Behavioral Studies in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Our previous results have shown that somatostatin receptor subtype SST2A is responsible for thermal, but not mechanical nociceptive transmission in the rat spinal cord. The present study was undertaken to further examine the ultrastructural localization of SST2A receptor in lamina II of the spinal dorsal horn and the role of SST2A receptor in thermal hyperalgesia following Complete Freund’s Adjuvant (CFA)-induced inflammation. We found that SST2A receptors in lamina II are located primarily in postsynaptic dendrites and soma, but not in axons or synaptic terminals. CFA-induced inflammation markedly increased SST2A receptor-like immunoreactivity in lamina II. Paw withdrawal latency (PWL) evoked by noxious heating was obviously shortened 1 h after intraplantar injection of CFA, exhibiting thermal hyperalgesia. Pre-blocking SST2A activity by intrathecal pre-administration of CYN154806, a broad-spectrum antagonist of SST2 receptor, or specific antiserum against SST2A receptor (anti-SST2A) significantly attenuated thermal hyperalgesia in a dose-dependent fashion in CFA-treated rats. But, administration of anti-SST2A or CYN154806 after CFA treatment had no effect upon thermal hyperalgesia. Intrathecal application of SST2A agonist SOM-14 at different doses prior to CFA treatment did not influence thermal hyperalgesia in inflamed rats, but at a low dose shortened PWL evoked by noxious heating in normal rats. These results suggest that spinal SST2A receptors play a key role in triggering the generation, but not maintenance, of thermal hyperalgesia evoked by CFA-induced inflammation. The up-regulation of SST2A receptors in the spinal cord may be one of the mechanisms underlying inflammation-induced thermal hyperalgesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

anti-SST2A :

Antiserum against SST2A receptor

CFA:

Complete Freunds’s Adjuvant

DAB:

3,3-diaminobenzidine

i.t.:

Intrathecal

NGST:

Normal goat serum in PBS with Triton X-100

PB:

Phosphate buffer

PBS:

Phosphate buffered saline

PWL:

Paw withdrawal latency

SOM:

Somatostatin

SOM-LI:

SOM-like immunoreactive

SST:

Somatostatin receptor

SST2A-LI:

SST2A receptors-like immunoreactivity

References

  1. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179:77–79

    Article  PubMed  CAS  Google Scholar 

  2. Johansson O, Hokfelt T, Elde RP (1984) Immunohistochemical distribution of somatostatin-like immunoreactivity in the central nervous system of the adult rat. Neuroscience 13:265–339

    Article  PubMed  CAS  Google Scholar 

  3. Esclapez M, Houser CR (1995) Somatostatin neurons are a subpopulation of GABA neurons in the rat dentate gyrus: evidence from colocalization of pre-prosomatostatin and glutamate decarboxylase messenger RNAs. Neuroscience 64:339–355

    Article  PubMed  CAS  Google Scholar 

  4. Epelbaum J, Dournaud P, Fodor M, Viollet C (1994) The neurobiology of somatostatin. Crit Rev Neurobiol 8:25–44

    PubMed  CAS  Google Scholar 

  5. Yamada Y, Post SR, Wang K, Tager HS, Bell GI, Seino S (1992) Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc Natl Acad Sci USA 89:251–255

    Article  PubMed  CAS  Google Scholar 

  6. Vanetti M, Kouba M, Wang X, Vogt G, Hollt V (1992) Cloning and expression of a novel mouse somatostatin receptor (SSTR2B). FEBS Lett 311:290–294

    Article  PubMed  CAS  Google Scholar 

  7. Vanetti M, Vogt G, Hollt V (1993) The two isoforms of the mouse somatostatin receptor (mSSTR2A and mSSTR2B) differ in coupling efficiency to adenylate cyclase and in agonist-induced receptor desensitization. FEBS Lett 331:260–266

    Article  PubMed  CAS  Google Scholar 

  8. Hokfelt T, Elde R, Johansson O, Luft R, Arimura A (1975) Immunohistochemical evidence for the presence of somatostatin, a powerful inhibitory peptide, in some primary sensory neurons. Neurosci Lett 1:231–235

    Article  Google Scholar 

  9. Hokfelt T, Elde R, Johansson O, Luft R, Nilsson G, Arimura A (1976) Immunohistochemical evidence for separate populations of somatostatin-containing and substance P-containing primary afferent neurons in the rat. Neuroscience 1:131–136

    Article  PubMed  CAS  Google Scholar 

  10. Nagy JI, Hunt SP, Iversen LL, Emson PC (1981) Biochemical and anatomical observations on the degeneration of peptide-containing primary afferent neurons after neonatal capsaicin. Neuroscience 6:1923–1934

    Article  PubMed  CAS  Google Scholar 

  11. Kummer W, Heym C (1986) Correlation of neuronal size and peptide immunoreactivity in the guinea-pig trigeminal ganglion. Cell Tissue Res 245:657–665

    Article  PubMed  CAS  Google Scholar 

  12. Tuchscherer MM, Seybold VS (1989) A quantitative study of the coexistence of peptides in varicosities within the superficial laminae of the dorsal horn of the rat spinal cord. J Neurosci 9:195–205

    PubMed  CAS  Google Scholar 

  13. Garry MG, Miller KE, Seybold VS (1989) Lumbar dorsal root ganglia of the cat: a quantitative study of peptide immunoreactivity and cell size. J Comp Neurol 284:36–47

    Article  PubMed  CAS  Google Scholar 

  14. Hanesch U, Heppelmann B, Schmidt RF (1995) Somatostatin-like immunoreactivity in primary afferents of the medial articular nerve and colocalization with substance P in the cat. J Comp Neurol 354:345–352

    Article  PubMed  CAS  Google Scholar 

  15. Li CQ, Zhao ZQ, Yang HQ (1991) Effects of cysteamine on flexion reflex facilitation by C-primary afferents in cats. Zhongguo Yao Li Xue Bao 12:199–202

    PubMed  CAS  Google Scholar 

  16. Tuchscherer MM, Seybold VS (1985) Immunohistochemical studies of substance P, cholecystokinin-octapeptide and somatostatin in dorsal root ganglia of the rat. Neuroscience 14:593–605

    Article  PubMed  CAS  Google Scholar 

  17. Wiesenfeld-Hallin Z (1985) Intrathecal somatostatin modulates spinal sensory and reflex mechanisms: behavioral and electrophysiological studies in the rat. Neurosci Lett 62:69–74

    Article  PubMed  CAS  Google Scholar 

  18. Wiesenfeld-Hallin Z (1986) Substance P and somatostatin modulate spinal cord excitability via physiologically different sensory pathways. Brain Res 372:172–175

    Article  PubMed  CAS  Google Scholar 

  19. Ohno H, Kuraishi Y, Minami M, Satoh M (1988) Modality-specific antinociception produced by intrathecal injection of anti-somatostatin antiserum in rats. Brain Res 474:197–200

    Article  PubMed  CAS  Google Scholar 

  20. Traub RJ, Brozoski D (1996) Anti-somatostatin antisera, but neither a somatostatin agonist (octreotide) nor antagonist (CYCAM), attenuates hyperalgesia in the rat. Peptides 17:769–773

    Article  PubMed  CAS  Google Scholar 

  21. Mollenholt P, Post C, Rawal N, Freedman J, Hokfelt T, Paulsson I (1988) Antinociceptive and ‘neurotoxic’ actions of somatostatin in rat spinal cord after intrathecal administration. Pain 32:95–105

    Article  PubMed  CAS  Google Scholar 

  22. Mollenholt P, Post C, Paulsson I, Rawal N (1990) Intrathecal and epidural somatostatin in rats: can antinociception, motor effects and neurotoxicity be separated? Pain 43:363–370

    Article  PubMed  CAS  Google Scholar 

  23. Sandkuhler J, Fu QG, Helmchen C (1990) Spinal somatostatin superfusion in vivo affects activity of cat nociceptive dorsal horn neurons: comparison with spinal morphine. Neuroscience 34:565–576

    Article  PubMed  CAS  Google Scholar 

  24. Fodor M, Slama A, Guillaume V, Videau C, Csaba Z, Oliver C, Epelbaum J (1997) Distribution and pharmacological characterization of somatostatin receptor binding sites in the sheep brain. J Chem Neuroanat 12:175–182

    Article  PubMed  CAS  Google Scholar 

  25. Uhl GR, Tran V, Snyder SH, Martin JB (1985) Somatostatin receptors: distribution in rat central nervous system and human frontal cortex. J Comp Neurol 240:288–304

    Article  PubMed  CAS  Google Scholar 

  26. Ohno H, Kuraishi Y, Nanayama T, Minami M, Kawamura M, Satoh M (1990) Somatostatin is increased in the dorsal root ganglia of adjuvant-inflamed rat. Neurosci Res 8:179–188

    Article  PubMed  CAS  Google Scholar 

  27. Schulz S, Schmidt H, Handel M, Schreff M, Hollt V (1998) Differential distribution of alternatively spliced somatostatin receptor 2 isoforms (sst2A and sst2B) in rat spinal cord. Neurosci Lett 257:37–40

    Article  PubMed  CAS  Google Scholar 

  28. Schulz S, Schreff M, Schmidt H, Handel M, Przewlocki R, Hollt V (1998) Immunocytochemical localization of somatostatin receptor sst2A in the rat spinal cord and dorsal root ganglia. Eur J Neurosci 10:3700–3708

    Article  PubMed  CAS  Google Scholar 

  29. Song P, Hu JY, Zhao ZQ (2002) Spinal somatostatin SSTR2A receptors are preferentially up-regulated and involved in thermonociception but not mechanonociception. Exp Neurol 178:280–287

    Article  PubMed  CAS  Google Scholar 

  30. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  PubMed  CAS  Google Scholar 

  31. Hsu SM, Raine L, Fanger H (1981) Use of avidin–biotin–peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    PubMed  CAS  Google Scholar 

  32. Jensen TS, Smith DF (1982) Role of 5-HT and NA in spinal dopaminergic analgesia. Eur J Pharmacol 86:65–70

    Article  PubMed  CAS  Google Scholar 

  33. Kuraishi Y, Hirota N, Sato Y, Hino Y, Satoh M, Takagi H (1985) Evidence that substance P and somatostatin transmit separate information related to pain in the spinal dorsal horn. Brain Res 325:294–298

    Article  PubMed  CAS  Google Scholar 

  34. Morton CR, Hutchison WD, Hendry IA, Duggan AW (1989) Somatostatin: evidence for a role in thermal nociception. Brain Res 488:89–96

    Article  PubMed  CAS  Google Scholar 

  35. Liu H, Yang HQ, Zhao ZQ (1998) The functional differentiation of substance P and somatostatin in mediating spinal nociception. Chin J Neurosci 14:146–150

    CAS  Google Scholar 

  36. Yang HQ, Zhao ZQ, Liu Y (1994) Preferential inhibition of responses of spinal dorsal horn neurons to noxious heat by cysteamine in the cat. Chin J Physiol Sci 10:79–84

    Google Scholar 

  37. Handel M, Schulz S, Stanarius A, Schreff M, Erdtmann-Vourliotis M, Schmidt H, Wolf G, Hollt V (1999) Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience 89:909–926

    Article  PubMed  CAS  Google Scholar 

  38. Gao YJ, Zhang YQ, Zhao ZQ (2003) Involvement of spinal neurokinin-1 receptors in the maintenance but not induction of carrageenan-induced thermal hyperalgesia in the rat. Brain Res Bull 61:587–593

    Article  PubMed  CAS  Google Scholar 

  39. De Felipe C, Herrero JF, O’Brien JA, Palmer JA, Doyle CA, Smith AJ, Laird JM, Belmonte C, Cervero F, Hunt SP (1998) Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392:394–397

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. S. Schulz for the gift of antiserum against SST2A receptor. The work was supported by grants from National Basic Research Program of China Grant (No. 2006CB500807 and 2007CB5125) for Z. Q. Zhao, Postdoctoral Science Foundation of China (1999) and Chinese Academy of Sciences KC Wong Postdoctoral Research Award Fund (2000-the 21st) for Dr. J. Y. Hu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Qi Zhao.

Additional information

Special issue article in honor of Dr. Ji-Sheng Han.

Jun Zhao and Jiang-Yuan Hu—contributed equally in this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Hu, JY., Zhang, YQ. et al. Involvement of Spinal Somatostatin Receptor SST2A in Inflammation-Induced Thermal Hyperalgesia: Ultrastructural and Behavioral Studies in Rats. Neurochem Res 33, 2099–2106 (2008). https://doi.org/10.1007/s11064-008-9713-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9713-x

Keywords

Navigation