Neurochemical Research

, Volume 33, Issue 8, pp 1475–1483 | Cite as

Contribution of NMDA and Non-NMDA Receptors to In vivo Glutamate-Induced Calpain Activation in the Rat Striatum. Relation to Neuronal Damage

  • Perla Del Río
  • Teresa Montiel
  • Lourdes Massieu
Original Paper


Glutamate, the major excitatory neurotransmitter, can cause the death of neurons by a mechanism known as excitotoxicity. This is a calcium-dependent process and activation of the NMDA receptor subtype contributes mainly to neuronal damage, due to its high permeability to calcium. Activation of calpain, a calcium-dependent cysteine protease, has been implicated in necrotic excitotoxic neuronal death. We have investigated the contribution of NMDA and non-NMDA ionotropic receptors to calpain activation and neuronal death induced by the acute administration of glutamate into the rat striatum. Calpain activity was assessed by the cleavage of the cytoskeletal protein, α-spectrin. Caspase-3 activity was also studied because glutamate can also lead to apoptosis. Results show no caspase-3 activity, but a strong calpain activation involving both NMDA and non-NMDA receptors. Although neuronal damage is mediated mainly by the NMDA receptor subtype, it can not be attributed solely to calpain activity.


NMDA AMPA Kainate Caspase-3 Calpain Neurotoxicity 



This work was supported by IN213507 PAPPIT (UNAM) grant to LM and 167146 CONACYT and DGEP fellowships to P. Del Río supported this work.


  1. 1.
    Olney JW, Ho OL, Rhee V (1971) Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp Brain Res 14:61–76PubMedCrossRefGoogle Scholar
  2. 2.
    Choi DW, Koh JY, Peters S (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci 8:185–196PubMedGoogle Scholar
  3. 3.
    Koh JY, Goldberg MP, Hartley DM, Choi DW (1990) Non-NMDA receptor-mediated neurotoxicity in cortical culture. J Neurosci 10:693–705PubMedGoogle Scholar
  4. 4.
    Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7:369–379PubMedGoogle Scholar
  5. 5.
    Randall RD, Thayer SA (1992) Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci 12:1882–1895PubMedGoogle Scholar
  6. 6.
    Michaels RL, Rothman SM (1990) Glutamate neurotoxicity in vitro: antagonist pharmacology and intracellular calcium concentrations. J Neurosci 10:283–292PubMedGoogle Scholar
  7. 7.
    Lafon-Cazal M, Culcasi M, Gaven F et al (1993) Nitric oxide, superoxide and peroxynitrite: putative mediators of NMDA-induced cell death in cerebellar granule cells. Neuropharmacology 32:1259–1266PubMedCrossRefGoogle Scholar
  8. 8.
    Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6:337–350PubMedCrossRefGoogle Scholar
  9. 9.
    Oliver MW, Baudry M, Lynch G (1989) The protease inhibitor leupeptin interferes with the development of LTP in hippocampal slices. Brain Res 505:233–238PubMedCrossRefGoogle Scholar
  10. 10.
    del Cerro S, Larson J, Oliver MW et al (1990) Development of hippocampal long-term potentiation is reduced by recently introduced calpain inhibitors. Brain Res 530:91–95PubMedCrossRefGoogle Scholar
  11. 11.
    Denny JB, Polan-Curtain J, Ghuman A et al (1990) Calpain inhibitors block long-term potentiation. Brain Res 534:317–320PubMedCrossRefGoogle Scholar
  12. 12.
    Vanderklish P, Bednarski E, Lynch G (1996) Translational suppression of calpain blocks long-term potentiation. Learn Mem 3:209–217PubMedCrossRefGoogle Scholar
  13. 13.
    Wang K (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23:20–26PubMedCrossRefGoogle Scholar
  14. 14.
    Goll D, Thompson V, Li H et al (2002) The calpain system. Physiol Rev 83:731–801Google Scholar
  15. 15.
    Seubert P, Lee K, Lynch G (1989) Ischemia triggers NMDA receptor-linked cytoskeletal proteolysis in hippocampus. Brain Res 492:366–370PubMedCrossRefGoogle Scholar
  16. 16.
    Lee KS, Frank S, Vanderklish P et al (1991) Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc Natl Acad Sci USA 88:7233–7237PubMedCrossRefGoogle Scholar
  17. 17.
    Rami A, Krieglstein J (1993) Protective effects of calpain inhibitors against neuronal damage caused by cytotoxic hypoxia in vitro and ischemia in vivo. Brain Res 609:67–70PubMedCrossRefGoogle Scholar
  18. 18.
    Siman R, Noszek JC (1988) Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1:279–287PubMedCrossRefGoogle Scholar
  19. 19.
    Bahr BA, Tiriveedhi S, Park GY et al (1995) Induction of calpain-mediated spectrin fragments by pathogenic treatments in long-term hippocampal slices. J Pharmacol Exp Ther 273:902–908PubMedGoogle Scholar
  20. 20.
    Aráujo IM, Verdasca MJ, Leal EC et al (2004) Early calpain-mediated proteolysis following AMPA receptor activation compromises neuronal survival in cultured hippocampal neurons. J Neurochem 91:1322–1331PubMedCrossRefGoogle Scholar
  21. 21.
    MacDermott AB, Mayer ML, Westbrook GL et al (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurons. Nature 321:519–522PubMedCrossRefGoogle Scholar
  22. 22.
    Mayer ML, Westbrook GL (1987) Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurons. J Physiol 394:501–527PubMedGoogle Scholar
  23. 23.
    Markgraf CG, Velayo NL, Johnson MP et al (1998) Six-hour window of opportunity for calpain inhibition in focal cerebral ischemia in rats. Stroke 29:152–158PubMedGoogle Scholar
  24. 24.
    Ankarcrona M, Dypbukt JM, Bonfoco E et al (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973PubMedCrossRefGoogle Scholar
  25. 25.
    Bonfoco E, Krainc D, Ankarcrona M et al (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92:7162–7166PubMedCrossRefGoogle Scholar
  26. 26.
    Cheung NS, Pascoe CJ, Giardina SF et al (1998) Micromolar L-glutamate induces extensive apoptosis in an apoptotic-necrotic continuum of insult-dependent, excitotoxic injury in cultured cortical neurons. Neuropharmacology 37:1419–1429PubMedCrossRefGoogle Scholar
  27. 27.
    Siman R, Noszek JC, Kegerise C (1989) Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J Neurosci 9:1579–1590PubMedGoogle Scholar
  28. 28.
    Del Rio P, Montiel T, Chagoya V et al (2007) Exacerbation of excitotoxic neuronal death induced during mitochondrial inhibition in vivo: relation to energy imbalance or ATP depletion? Neuroscience 146:1561–1570PubMedCrossRefGoogle Scholar
  29. 29.
    Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, SidneyGoogle Scholar
  30. 30.
    Massieu L, Moran J, Christen Y (2004) Effect of Ginkgo biloba (EGb 761) on staurosporine-induced neuronal death and caspase activity in cortical cultured neurons. Brain Res 1002:76–85PubMedCrossRefGoogle Scholar
  31. 31.
    Bahr BA, Tiriveedhi S, Park GY et al (1995) Induction of calpain-mediated spectrin fragments by pathogenic treatments in long-term hippocampal slices. J Pharmacol Exp Ther 273:902–908PubMedGoogle Scholar
  32. 32.
    Roberts-Lewis JM, Siman R (1993) Spectrin proteolysis in the hippocampus: a biochemical marker for neuronal injury and neuroprotection. Ann N Y Acad Sci 679:78–86PubMedCrossRefGoogle Scholar
  33. 33.
    Roberts-Lewis JM, Savage MJ, Marcy VR et al (1994) Immunolocalization of calpain I-mediated spectrin degradation to vulnerable neurons in the ischemic gerbil brain. J Neurosci 14:3934–3944PubMedGoogle Scholar
  34. 34.
    Bizat N, Hermel JM, Boyer F et al (2003) Calpain is a major cell death effector in selective striatal degeneration induced in vivo by 3-nitropropionate: implications for Huntington’s disease. J Neurosci 23:5020–5030PubMedGoogle Scholar
  35. 35.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  36. 36.
    Massieu L, Tapia R (1994) 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline protects against both AMPA and kainate-induced lesions in the rat striatum in vivo. Neuroscience 59:931–938PubMedCrossRefGoogle Scholar
  37. 37.
    Massieu L, Del Rio P, Montiel T (2001) Neurotoxicity of glutamate uptake inhibition in vivo: correlation with succinate dehydrogenase activity and prevention by energy substrates. Neuroscience 106:669–677PubMedCrossRefGoogle Scholar
  38. 38.
    Montiel T, Camacho A, Estrada-Sanchez AM et al (2005) Differential effects of the substrate inhibitor L-trans-pyrrolidine-2,4-dicarboxylate (PDC) and the non-substrate inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA) of glutamate transporters on neuronal damage and extracellular amino acid levels in rat brain in vivo. Neuroscience 133:667–678PubMedCrossRefGoogle Scholar
  39. 39.
    Camacho A, Montiel T, Massieu L (2006) The anion channel blocker, 4,4’-dinitrostilbene-2,2’-disulfonic acid prevents neuronal death and excitatory amino acid release during glycolysis inhibition in the hippocampus in vivo. Neuroscience 142:1005–1017PubMedCrossRefGoogle Scholar
  40. 40.
    Siman R, Noszek JC, Kegerise C (1989) Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J Neurosci 9:1579–1590PubMedGoogle Scholar
  41. 41.
    Bahr BA, Tiriveedhi S, Park GY et al (1995) Induction of calpain-mediated spectrin fragments by pathogenic treatments in long-term hippocampal slices. J Pharmacol Exp Ther 273:902–908PubMedGoogle Scholar
  42. 42.
    Jourdi H, Yanagihara T, Martinez U et al (2005) Effects of positive AMPA receptor modulators on calpain-mediated spectrin degradation in cultured hippocampal slices. Neurochem Int 46:31–40PubMedCrossRefGoogle Scholar
  43. 43.
    Lopez-Picon FR, Kukko-Lukjanov TK, Holopainen IE (2006) The calpain inhibitor MDL-28170 and the AMPA/KA receptor antagonist CNQX inhibit neurofilament degradation and enhance neuronal survival in kainic acid-treated hippocampal slice cultures. Eur J Neurosci 23:2686–2694PubMedCrossRefGoogle Scholar
  44. 44.
    Mejia-Toiber J, Montiel T, Massieu L (2006) D-beta-hydroxybutyrate prevents glutamate-mediated lipoperoxidation and neuronal damage elicited during glycolysis inhibition in vivo. Neurochem Res 31:1399–1408PubMedCrossRefGoogle Scholar
  45. 45.
    Sanchez-Carbente MR, Massieu L (1999) Transient inhibition of glutamate uptake in vivo induces neurodegeneration when energy metabolism is impaired. J Neurochem 72:129–138PubMedCrossRefGoogle Scholar
  46. 46.
    Greene JG, Greenamyre JT (1995) Exacerbation of NMDA, AMPA and L-glutamate excitotoxicity by the succinate dehydrogenase inhibitor malonate. J Neurochem 64:2332–2338PubMedCrossRefGoogle Scholar
  47. 47.
    Vanderklish PW, Bahr BA (2000) The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. Int J Exp Pathol 81:323–339PubMedCrossRefGoogle Scholar
  48. 48.
    Czogalla A, Sikorski AF (2005) Spectrin and calpain: a ‘target’ and a ‘sniper’ in the pathology of neuronal cells. Cell Mol Life Sci 62:1913–1924PubMedCrossRefGoogle Scholar
  49. 49.
    Ambrosio AF, Silva AP, Malva JO et al (2000) Role of desensitization of AMPA receptors on the neuronal viability and on the [Ca2+]i changes in cultured rat hippocampal neurons. Eur J Neurosci 12:2021–2031PubMedCrossRefGoogle Scholar
  50. 50.
    Bano D, Young KW, Guerin CJ et al (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120:275–285PubMedCrossRefGoogle Scholar
  51. 51.
    Pottorf WJ 2nd, Johanns TM, Derrington SM et al (2006) Glutamate-induced protease-mediated loss of plasma membrane Ca2+ pump activity in rat hippocampal neurons. J Neurochem 98:1646–1656PubMedCrossRefGoogle Scholar
  52. 52.
    Yuen EY, Gu Z, Yan Z (2007) Calpain regulation of AMPA receptor channels in cortical piramidal neurons. J Physiol 580:241–254PubMedCrossRefGoogle Scholar
  53. 53.
    Li P-A, Howlett W, He QP (1998) Postischemic treatment with calpain inhibitor MDL 28170 ameliorates brain damage in a gerbil model of global ischemia. Neurosci Lett 247:17–20PubMedCrossRefGoogle Scholar
  54. 54.
    Ozawa S, Kamiya H, Tsuzuki K (1998) Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54:581–618PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Perla Del Río
    • 1
  • Teresa Montiel
    • 1
  • Lourdes Massieu
    • 1
    • 2
  1. 1.Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Departamento de Neurociencias, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations